STABILITY AND FAILURE OF THIN-WALLED COMPOSITE STRUCTURES WITH A SQUARE CROSS-SECTION

Błażej CZAJKA

blazej.czajka@pollub.edu.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin (Poland)

Patryk RÓŻYŁO


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin (Poland)

Hubert DĘBSKI


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin (Poland)

Abstract

This paper is devoted to the analysis of the stability and load-carrying capacity of thin-walled composite profiles in compression. The specimens reflect elements made of carbon fibre reinforced laminate (CFRP). Thin-walled columns with a square crosssection were made from 4 layers of composite in 3 different combinations of layer arrangements. Advanced numerical analyses have been carried out. In the first stage of the study, a buckling analysis of the structure was performed. In further numerical simulations, two advanced models were used simultaneously: the Progressive Failure Analysis (PFA) and the Cohesive Zone Model (CZM). The results showed significant differences between the critical load values for each layer configuration. The forms of buckling and the areas of damage initiation and evolution were also dependent on the applied layup.


Keywords:

finite element method (FEM), post-buckling, progressive failure analysis (PFA), delamination, cohesive zone model (CZM)

Abrate, S. (1998). Impact on Composite Structures. Cambridge University Press.
DOI: https://doi.org/10.1017/CBO9780511574504   Google Scholar

Berardi, V. P., Perrella, M., Feo, L., & Cricri, G. (2017). Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modelling. Composites Part B: Engineering, 122, 136–144. https://doi.org/10.1016/j.compositesb.2017.04.015
DOI: https://doi.org/10.1016/j.compositesb.2017.04.015   Google Scholar

Camanho, P. P., & Matthews, F. L. (1999). A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. Journal of Composite Materials, 33(24), 2248–2280. https://doi.org/10.1177%2F002199839903302402
DOI: https://doi.org/10.1177/002199839903302402   Google Scholar

Campbell, F. C. (2004). Manufacturing Processes for Advanced Composites. Elsevier B.V.
  Google Scholar

Campbell, F. C. (2006). Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd.
DOI: https://doi.org/10.1016/B978-185617495-4/50011-1   Google Scholar

Chung, D. D. L. (1994). Carbon Fiber Composites. Elsevier Inc.
DOI: https://doi.org/10.1016/B978-0-08-050073-7.50012-9   Google Scholar

Debski, H., Rozylo, P., Gliszczynski, A., & Kubiak, T. (2019). Numerical models for buckling, postbuckling and failure analysis of pre-damaged thin-walled composite struts subjected to uniform compression. ThinWalled Structures, 139, 53–65. https://doi.org/10.1016/j.tws.2019.02.030
DOI: https://doi.org/10.1016/j.tws.2019.02.030   Google Scholar

Debski, H., Teter, A., Kubiak, T., & Samborski, S. (2016). Local buckling, post-buckling and collapse of thinwalled channel section composite columns subjected to quasi-static compression. Composite Structures, 136, 593–601. https://doi.org/10.1016/j.compstruct.2015.11.008
DOI: https://doi.org/10.1016/j.compstruct.2015.11.008   Google Scholar

Falkowicz, K., Mazurek, P., Rozylo, P., Wysmulski, P., & Smagowski, W. (2016). Experimental and numerical analysis of the compression thin-walled composite plate. Advances in Science and Technology Research Journal, 10(31), 177–184. https://doi.org/10.12913/22998624/64063
DOI: https://doi.org/10.12913/22998624/64063   Google Scholar

Fascetti, A., Feo, L., Nisticò, N., & Penna, R. (2016). Web-flange behavior of pultruded GFRP I-beams: A lattice model for the interpretation of experimental results. Composites Part B: Engineering, 100, 257–269. https://doi.org/10.1016/j.compositesb.2016.06.058
DOI: https://doi.org/10.1016/j.compositesb.2016.06.058   Google Scholar

Freeman, W. T. (1993). The use of composites in aircraft primary structure. Composites Engineering, 3(7–8), 767–775. https://doi.org/10.1016/0961-9526(93)90095-2
DOI: https://doi.org/10.1016/0961-9526(93)90095-2   Google Scholar

Koiter, W. (1963). Elastic Stability and Post Buckling Behavior in Nonlinear Problems. University of Wisconsin Press.
  Google Scholar

Kubiak, T., Kolakowski, Z., Swinarski, J., Urbaniak, M., & Gliszczynski, A. (2016). Local buckling and postbuckling of composite channel-section beams – Numerical and experimental investigations. Composites Part B: Engineering, 91, 176–188. https://doi.org/10.1016/j.compositesb.2016.01.053
DOI: https://doi.org/10.1016/j.compositesb.2016.01.053   Google Scholar

Lapczyk, I., & Hurtado, J. A. (2007). Progressive damage modeling in fiber-reinforced materials. Composites Part A: Applied Science and Manufacturing, 38(11), 2333–2341. https://doi.org/10.1016/j.compositesa.2007.01.017
DOI: https://doi.org/10.1016/j.compositesa.2007.01.017   Google Scholar

Liu, P. F., Gu, Z. P., Peng, X. Q., & Zheng, J. Y. (2015). Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression. Composite Structures, 131, 975–986. https://doi.org/10.1016/j.compstruct.2015.06.058
DOI: https://doi.org/10.1016/j.compstruct.2015.06.058   Google Scholar

Paszkiewicz, M., & Kubiak, T. (2015). Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures, 93, 112–121. https://doi.org/10.1016/j.tws.2015.03.009
DOI: https://doi.org/10.1016/j.tws.2015.03.009   Google Scholar

Rozylo, P., Debski, H., Wysmulski, P., & Falkowicz, K. (2018). Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression. Composite Structures, 204, 207–216. https://doi.org/10.1016/j.compstruct.2018.07.068
DOI: https://doi.org/10.1016/j.compstruct.2018.07.068   Google Scholar

Singer, J., Arbocz, J., & Weller, T. (1998). Buckling Experiments: Experimental Methods in Buckling of ThinWalled Structures, Volume 1: Basic Concepts, Columns, Beams and Plates. John Wiley & Sons Inc.
  Google Scholar

Wysmulski, P., Debski, H., Rozylo, P., & Falkowicz, K. (2016). A study of stability and post-critical behaviour of thin-walled composite profiles under compression. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 18(4), 632–637. http://dx.doi.org/10.17531/ein.2016.4.19
DOI: https://doi.org/10.17531/ein.2016.4.19   Google Scholar

Download


Published
2022-06-30

Cited by

CZAJKA, B., RÓŻYŁO, P., & DĘBSKI, H. (2022). STABILITY AND FAILURE OF THIN-WALLED COMPOSITE STRUCTURES WITH A SQUARE CROSS-SECTION. Applied Computer Science, 18(2), 43–55. https://doi.org/10.35784/acs-2022-12

Authors

Błażej CZAJKA 
blazej.czajka@pollub.edu.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin Poland

Authors

Patryk RÓŻYŁO 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin Poland

Authors

Hubert DĘBSKI 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin Poland

Statistics

Abstract views: 96
PDF downloads: 59


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.