STABILITY AND FAILURE OF THIN-WALLED COMPOSITE STRUCTURES WITH A SQUARE CROSS-SECTION
Article Sidebar
Open full text
Issue Vol. 18 No. 2 (2022)
-
USE OF SERIOUS GAMES FOR THE ASSESSMENT OF MILD COGNITIVE IMPAIRMENT IN THE ELDERLY
Moon-gee CHOI5-15
-
A DISTRIBUTED ALGORITHM FOR PROTEIN IDENTIFICATION FROM TANDEM MASS SPECTROMETRY DATA
Katarzyna ORZECHOWSKA, Tymon RUBEL, Robert KURJATA, Krzysztof ZAREMBA16-27
-
CONTRAST ENHANCEMENT OF SCANNING ELECTRON MICROSCOPY IMAGES USING A NONCOMPLEX MULTIPHASE ALGORITHM
Zaid ALSAYGH, Zohair AL-AMEEN28-42
-
STABILITY AND FAILURE OF THIN-WALLED COMPOSITE STRUCTURES WITH A SQUARE CROSS-SECTION
Błażej CZAJKA, Patryk RÓŻYŁO, Hubert DĘBSKI43-55
-
TOMATO DISEASE DETECTION MODEL BASED ON DENSENET AND TRANSFER LEARNING
Mahmoud BAKR, Sayed ABDEL-GABER, Mona NASR, Maryam HAZMAN56-70
-
KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING
Robert KARPIŃSKI71-85
-
CYBER SECURITY IN INDUSTRIAL CONTROL SYSTEMS (ICS): A SURVEY OF ROWHAMMER VULNERABILITY
Hakan AYDIN, Ahmet SERTBAŞ86-100
-
APPLICATION OF FINITE DIFFERENCE METHOD FOR MEASUREMENT SIMULATION IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Konrad KANIA, Mariusz MAZUREK, Tomasz RYMARCZYK101-109
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper is devoted to the analysis of the stability and load-carrying capacity of thin-walled composite profiles in compression. The specimens reflect elements made of carbon fibre reinforced laminate (CFRP). Thin-walled columns with a square crosssection were made from 4 layers of composite in 3 different combinations of layer arrangements. Advanced numerical analyses have been carried out. In the first stage of the study, a buckling analysis of the structure was performed. In further numerical simulations, two advanced models were used simultaneously: the Progressive Failure Analysis (PFA) and the Cohesive Zone Model (CZM). The results showed significant differences between the critical load values for each layer configuration. The forms of buckling and the areas of damage initiation and evolution were also dependent on the applied layup.
Keywords:
References
Abrate, S. (1998). Impact on Composite Structures. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511574504
Berardi, V. P., Perrella, M., Feo, L., & Cricri, G. (2017). Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modelling. Composites Part B: Engineering, 122, 136–144. https://doi.org/10.1016/j.compositesb.2017.04.015 DOI: https://doi.org/10.1016/j.compositesb.2017.04.015
Camanho, P. P., & Matthews, F. L. (1999). A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. Journal of Composite Materials, 33(24), 2248–2280. https://doi.org/10.1177%2F002199839903302402 DOI: https://doi.org/10.1177/002199839903302402
Campbell, F. C. (2004). Manufacturing Processes for Advanced Composites. Elsevier B.V.
Campbell, F. C. (2006). Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd. DOI: https://doi.org/10.1016/B978-185617495-4/50011-1
Chung, D. D. L. (1994). Carbon Fiber Composites. Elsevier Inc. DOI: https://doi.org/10.1016/B978-0-08-050073-7.50012-9
Debski, H., Rozylo, P., Gliszczynski, A., & Kubiak, T. (2019). Numerical models for buckling, postbuckling and failure analysis of pre-damaged thin-walled composite struts subjected to uniform compression. ThinWalled Structures, 139, 53–65. https://doi.org/10.1016/j.tws.2019.02.030 DOI: https://doi.org/10.1016/j.tws.2019.02.030
Debski, H., Teter, A., Kubiak, T., & Samborski, S. (2016). Local buckling, post-buckling and collapse of thinwalled channel section composite columns subjected to quasi-static compression. Composite Structures, 136, 593–601. https://doi.org/10.1016/j.compstruct.2015.11.008 DOI: https://doi.org/10.1016/j.compstruct.2015.11.008
Falkowicz, K., Mazurek, P., Rozylo, P., Wysmulski, P., & Smagowski, W. (2016). Experimental and numerical analysis of the compression thin-walled composite plate. Advances in Science and Technology Research Journal, 10(31), 177–184. https://doi.org/10.12913/22998624/64063 DOI: https://doi.org/10.12913/22998624/64063
Fascetti, A., Feo, L., Nisticò, N., & Penna, R. (2016). Web-flange behavior of pultruded GFRP I-beams: A lattice model for the interpretation of experimental results. Composites Part B: Engineering, 100, 257–269. https://doi.org/10.1016/j.compositesb.2016.06.058 DOI: https://doi.org/10.1016/j.compositesb.2016.06.058
Freeman, W. T. (1993). The use of composites in aircraft primary structure. Composites Engineering, 3(7–8), 767–775. https://doi.org/10.1016/0961-9526(93)90095-2 DOI: https://doi.org/10.1016/0961-9526(93)90095-2
Koiter, W. (1963). Elastic Stability and Post Buckling Behavior in Nonlinear Problems. University of Wisconsin Press.
Kubiak, T., Kolakowski, Z., Swinarski, J., Urbaniak, M., & Gliszczynski, A. (2016). Local buckling and postbuckling of composite channel-section beams – Numerical and experimental investigations. Composites Part B: Engineering, 91, 176–188. https://doi.org/10.1016/j.compositesb.2016.01.053 DOI: https://doi.org/10.1016/j.compositesb.2016.01.053
Lapczyk, I., & Hurtado, J. A. (2007). Progressive damage modeling in fiber-reinforced materials. Composites Part A: Applied Science and Manufacturing, 38(11), 2333–2341. https://doi.org/10.1016/j.compositesa.2007.01.017 DOI: https://doi.org/10.1016/j.compositesa.2007.01.017
Liu, P. F., Gu, Z. P., Peng, X. Q., & Zheng, J. Y. (2015). Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression. Composite Structures, 131, 975–986. https://doi.org/10.1016/j.compstruct.2015.06.058 DOI: https://doi.org/10.1016/j.compstruct.2015.06.058
Paszkiewicz, M., & Kubiak, T. (2015). Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures, 93, 112–121. https://doi.org/10.1016/j.tws.2015.03.009 DOI: https://doi.org/10.1016/j.tws.2015.03.009
Rozylo, P., Debski, H., Wysmulski, P., & Falkowicz, K. (2018). Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression. Composite Structures, 204, 207–216. https://doi.org/10.1016/j.compstruct.2018.07.068 DOI: https://doi.org/10.1016/j.compstruct.2018.07.068
Singer, J., Arbocz, J., & Weller, T. (1998). Buckling Experiments: Experimental Methods in Buckling of ThinWalled Structures, Volume 1: Basic Concepts, Columns, Beams and Plates. John Wiley & Sons Inc.
Wysmulski, P., Debski, H., Rozylo, P., & Falkowicz, K. (2016). A study of stability and post-critical behaviour of thin-walled composite profiles under compression. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 18(4), 632–637. http://dx.doi.org/10.17531/ein.2016.4.19 DOI: https://doi.org/10.17531/ein.2016.4.19
Article Details
Abstract views: 553
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
