INTELLIGENT CONTROLLING THE GRIPPING FORCE OF AN OBJECT BY TWO COMPUTER-CONTROLLED COOPERATIVE ROBOTS
Article Sidebar
Open full text
Issue Vol. 19 No. 1 (2023)
-
A LIGHTWEIGHT MULTI-PERSON POSE ESTIMATION SCHEME BASED ON JETSON NANO
Lei Liu; Eric B. Blancaflor, Mideth Abisado1-14
-
USAGE OF IOT EDGE APPROACH FOR ROAD QUALITY ANALYSIS
Marcin Badurowicz, Sebastian Łagowski15-24
-
CAN THE SYSTEM, INFORMATION, AND SERVICE QUALITIES IMPACT EMPLOYEE LEARNING, ADAPTABILITY, AND JOB SATISFACTION?
Zahid Zamir25-46
-
ARDP: SIMPLIFIED MACHINE LEARNING PREDICTOR FOR MISSING UNIDIMENSIONAL ACADEMIC RESULTS DATASET
Olufemi Folorunso, Olufemi Akinyede, Kehinde Agbele47-63
-
SYSTEMATIC LITERATURE REVIEW OF IOT METRICS
Donatien Koulla Moulla, Ernest Mnkandla, Alain Abran64-81
-
PREDICTING BANKING STOCK PRICES USING RNN, LSTM, AND GRU APPROACH
Dias Satria82-94
-
IMPROVING MATERIAL FLOW IN A MODIFIED PRODUCTION SYSTEM
Dariusz Plinta, Katarzyna Radwan95-106
-
A COMPARATIVE STUDY ON PERFORMANCE OF BASIC AND ENSEMBLE CLASSIFIERS WITH VARIOUS DATASETS
Archana Gunakala, Afzal Hussain Shahid107-132
-
INTELLIGENT CONTROLLING THE GRIPPING FORCE OF AN OBJECT BY TWO COMPUTER-CONTROLLED COOPERATIVE ROBOTS
ABDERRAHIM BAHANI, El Houssine Ech-Chhibat, Hassan SAMRI, Laila AIT MAALEM , Hicham AIT EL ATTAR133-151
-
RECOGNITION OF SPORTS EXERCISES USING INERTIAL SENSOR TECHNOLOGY
Pascal Krutz, Matthias Rehm, Holger Schlegel, Martin Dix152-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper presents a Multiple Adaptive Neuro-Fuzzy Inference System (MANFIS)-based method for regulating the handling force of a common object. The foundation of this method is the prediction of the inverse dynamics of a cooperative robotic system made up of two 3-DOF robotic manipulators. Considering the no slip in contact between the tool and the object, an object is moved. to create and feed the MANFIS database, the inverse kinematics and dynamic equations of motion for the closed chain of motion for both arms are established in Matlab. Results from a SimMechanic simulation are given to demonstrate how well the suggested ANFIS controller works. Several manipulated object movements covering the shared workspace of the two manipulator arms are used to test the proposed control strategy.
Keywords:
References
Arian, A., Danaei, B., Abdi, H., & Nahavandi, S. (2017). Kinematic and dynamic analysis of the Gantry-Tau, a 3-DoF translational parallel manipulator. Applied Mathematical Modelling, 51, 217-231. https://doi.org/10.1016/j.apm.2017.06.012 DOI: https://doi.org/10.1016/j.apm.2017.06.012
Azadi, M., Eghtesad, M., & Gharesifard, B. (2005). Inverse Dynamics Control of Two 5 DOF Cooperating Robot Manipulators. Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4a: ASME/IEEE Conference on Mechatronic and Embedded Systems and Applications (pp. 187-193). ASME. https://doi.org/10.1115/DETC2005-85634 DOI: https://doi.org/10.1115/DETC2005-85634
Azizian, K. (2001). Position control of two robots manipulating a rigid plate. Shiraz University. Bahani, A., Ech-Chhibat, E. H., Samri, H., & El Attar, H. A. (2022). Intelligent Modeling and Simulation of the inverse Kinematics Redundant 3-Dof Cooperative Using SolidWorks and MATLAB/Simmechanics. International Journal on Technical and Physical Problems of Engineering (IJTPE), 50(14), 78-88.
Esen, H., Inalli, M., Sengur, A., Esen, M. (2008). Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system. Energy and Buildings, 40(6), 1074-1083. https://doi.org/10.1016/j.enbuild.2007.10.002 DOI: https://doi.org/10.1016/j.enbuild.2007.10.002
Han, J., Wang, F., & Sun, C. (2023). Trajectory Tracking Control of a Manipulator Based on an Adaptive NeuroFuzzy Inference System. Applied Sciences, 13(2), 1046. http://dx.doi.org/10.3390/app13021046 DOI: https://doi.org/10.3390/app13021046
Hayati, S. (1986). Hybrid position-force control of multi arm cooperating robots. Proceedings. 1986 IEEE International Conference on Robotics and Automation (pp. 82-89). IEEE. https://doi.org/10.1109/ROBOT.1986.1087650 DOI: https://doi.org/10.1109/ROBOT.1986.1087650
Herrero, S., Pinto, C., Altuzarra, O., & Diez, M. (2018). Analysis of the 2PRU-1PRS 3DOF parallel manipulator: kinematics, singularities and dynamics. Robotics and Computer-Integrated Manufacturing, 51, 63-72. https://doi.org/10.1016/j.rcim.2017.11.018 DOI: https://doi.org/10.1016/j.rcim.2017.11.018
Hsu, P. (1989). Control of multi-manipulator system-trajectory tracing, load distribution, internal force control, and the decentralized architecture. Proceedings, 1989 International Conference on Robotics and Automation (pp. 1234-1239). IEEE. https://doi.org/10.1109/ROBOT.1989.100149 DOI: https://doi.org/10.1109/ROBOT.1989.100149
Hu, Y. R., & Goldenberg, A. A. (1989). An adaptive approach to motion and force control of multiple coordinated robots arms. Proceedings, 1989 International Conference on Robotics and Automation (pp. 1091-1096). IEEE. https://doi.org/10.1109/ROBOT.1989.100126 DOI: https://doi.org/10.1109/ROBOT.1989.100126
Ivanov, S., Meleshkova, Z., & Ivanovа, L. (2020). Calculation and Optimization of Industrial Robots Motion. 2020 26th Conference of Open Innovations Association (FRUCT) (pp. 115-123). IEEE. https://doi.org/10.23919/FRUCT48808.2020.9087376 DOI: https://doi.org/10.23919/FRUCT48808.2020.9087376
Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems Man & Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541 DOI: https://doi.org/10.1109/21.256541
Jha, P., Biswal, B. B., & Sahu, O. P. (2015). Inverse Kinematic Solution of Robot Manipulator Using Hybrid Neural Network. International Journal of Materials Science and Engineering, 3(1), 31-38. https://doi.org/10.12720/ijmse.3.1.31-38 DOI: https://doi.org/10.12720/ijmse.3.1.31-38
Kawazaki, H., Ito, S., & Ramli, R. B. (2003). Adaptative desentralised coordinated control of multiple robot arms. IFAC robot control, 36(17), 387-392. https://doi.org/10.1016/S1474-6670(17)33425-0 DOI: https://doi.org/10.1016/S1474-6670(17)33425-0
Klein, C. A., & Kittivatcharapong, S. (1990). Optimal force distribution for the legs of a walking machine with friction cone constraints. IEEE Trans. on Robotics and Automation, 6(1), 73–85. https://doi.org/10.1109/70.88119 DOI: https://doi.org/10.1109/70.88119
Liu, F., Gao, G., Shi, L., & Lv, Y. (2017). Kinematic analysis and simulation of a 3-DOF robotic manipulator. In 2017 3rd International Conference on Computational Intelligence & Communication Technology (pp. 1-5). IEEE. https://doi.org/10.1109/CIACT.2017.7977291 DOI: https://doi.org/10.1109/CIACT.2017.7977291
Mahfoudi, C., Djouani, K., Rechak, S., & Bouaziz, M. (2003). Optimal force distribution forthe legs of an hexapod robot. Proceedings of 2003 IEEE Conference on Control Applications (vol.1, pp. 657-663). IEEE. https://doi.org/10.1109/CCA.2003.1223515 DOI: https://doi.org/10.1109/CCA.2003.1223515
Walker, M.W., Kim, D., & Dionise, J. (1989). Adaptive coordinated motion control of two manipulators arms. Proceedings, 1989 International Conference on Robotics and Automation (pp. 1084-1090). IEEE. https://doi.org/10.1109/ROBOT.1989.100125 DOI: https://doi.org/10.1109/ROBOT.1989.100125
Article Details
Abstract views: 464
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
