A LIGHTWEIGHT MULTI-PERSON POSE ESTIMATION SCHEME BASED ON JETSON NANO
Article Sidebar
Open full text
Issue Vol. 19 No. 1 (2023)
-
A LIGHTWEIGHT MULTI-PERSON POSE ESTIMATION SCHEME BASED ON JETSON NANO
Lei Liu; Eric B. Blancaflor, Mideth Abisado1-14
-
USAGE OF IOT EDGE APPROACH FOR ROAD QUALITY ANALYSIS
Marcin Badurowicz, Sebastian Łagowski15-24
-
CAN THE SYSTEM, INFORMATION, AND SERVICE QUALITIES IMPACT EMPLOYEE LEARNING, ADAPTABILITY, AND JOB SATISFACTION?
Zahid Zamir25-46
-
ARDP: SIMPLIFIED MACHINE LEARNING PREDICTOR FOR MISSING UNIDIMENSIONAL ACADEMIC RESULTS DATASET
Olufemi Folorunso, Olufemi Akinyede, Kehinde Agbele47-63
-
SYSTEMATIC LITERATURE REVIEW OF IOT METRICS
Donatien Koulla Moulla, Ernest Mnkandla, Alain Abran64-81
-
PREDICTING BANKING STOCK PRICES USING RNN, LSTM, AND GRU APPROACH
Dias Satria82-94
-
IMPROVING MATERIAL FLOW IN A MODIFIED PRODUCTION SYSTEM
Dariusz Plinta, Katarzyna Radwan95-106
-
A COMPARATIVE STUDY ON PERFORMANCE OF BASIC AND ENSEMBLE CLASSIFIERS WITH VARIOUS DATASETS
Archana Gunakala, Afzal Hussain Shahid107-132
-
INTELLIGENT CONTROLLING THE GRIPPING FORCE OF AN OBJECT BY TWO COMPUTER-CONTROLLED COOPERATIVE ROBOTS
ABDERRAHIM BAHANI, El Houssine Ech-Chhibat, Hassan SAMRI, Laila AIT MAALEM , Hicham AIT EL ATTAR133-151
-
RECOGNITION OF SPORTS EXERCISES USING INERTIAL SENSOR TECHNOLOGY
Pascal Krutz, Matthias Rehm, Holger Schlegel, Martin Dix152-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
ebblancaflor@national-u.edu.ph
Abstract
As the basic technology of human action recognition, pose estimation is attracting more and more researchers' attention, while edge application scenarios pose a higher challenge. This paper proposes a lightweight multi-person pose estimation scheme to meet the needs of real-time human action recognition on the edge end. This scheme uses AlphaPose to extract human skeleton nodes, and adds ResNet and Dense Upsampling Revolution to improve its accuracy. Meanwhile, we use YOLO to enhance AlphaPose’s support for multi-person pose estimation, and optimize the proposed model with TensorRT. In addition, this paper sets Jetson Nano as the Edge AI deployment device of the proposed model and successfully realizes the model migration to the edge end. The experimental results show that the speed of the optimized object detection model can reach 20 FPS, and the optimized multi-person pose estimation model can reach 10 FPS. With the image resolution of 320×240, the model’s accuracy is 73.2%, which can meet the real-time requirements. In short, our scheme can provide a basis for lightweight multi-person action recognition scheme on the edge end.
Keywords:
References
Akshatha, K. R., Karunakar, A. K., Shenoy, S. B., Pai, A. K., Nagaraj, N. H., & Rohatgi, S. S. (2022). Human detection in aerial thermal images using faster R-CNN and SSD algorithms. Electronics, 11(7), 1151. https://doi.org/10.3390/electronics11071151 DOI: https://doi.org/10.3390/electronics11071151
Alnuaim, A. A., Zakariah, M., Hatamleh, W. A., Tarazi, H., Tripathi, V., & Amoatey, E. T. (2022). Humancomputer interaction with hand gesture recognition using ResNet and MobileNet. Computational
Intelligence Neuroscience, 2022, 8777355. https://doi.org/10.1155/2022/8777355 DOI: https://doi.org/10.1155/2022/8777355
Bertasius, G., Feichtenhofer, C., Tran, D., Shi, J., & Torresani, L. (2019). Learning temporal pose estimation from sparsely-labeled Videos. ArXiv, abs/1906.04016. https://doi.org/10.48550/arXiv.1906.04016
Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2016). Realtime multi-person 2D pose estimation using part affinity fields. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (pp. 1302–1310). IEEE. https://doi.org/10.1109/CVPR.2017.143. DOI: https://doi.org/10.1109/CVPR.2017.143
Chen, W., Jiang, Z., Guo, H., & Ni, X. (2020). Fall Detection Based on Key Points of Human-Skeleton Using OpenPose. Symmetry, 12(5), 744. https://doi.org/10.3390/sym12050744 DOI: https://doi.org/10.3390/sym12050744
Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., & Sun, J. (2018). Cascaded pyramid network for multi-person pose estimation. Proceedings of the IEEE Computer Society Conference on Computer Vision Pattern Recognition (pp. 7103–7112). IEEE. https://doi.org/10.1109/CVPR.2018.00742 DOI: https://doi.org/10.1109/CVPR.2018.00742
Chung, J.-L., Ong, L.-Y., & Leow, M. C. (2022). Comparative analysis of skeleton-based human pose estimation. Future Internet, 14(12), 380. https://doi.org/10.3390/fi14120380 DOI: https://doi.org/10.3390/fi14120380
Dewangan, D. K., & Sahu, S. P. (2021). Deep learning-based speed bump detection model for intelligent vehicle system using raspberry pi. IEEE Sensors Journal, 21, 3570–3578. https://doi.org/10.1109/JSEN.2020.3027097 DOI: https://doi.org/10.1109/JSEN.2020.3027097
Fang, H., Li, J., Tang, H., Xu, C., Zhu, H., Xiu, Y., Li, Y.-L., & Lu, C. (2022). AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time. ArXiv, abs/2211.03375. https://doi.org/10.48550/arXiv.2211.03375 DOI: https://doi.org/10.1109/TPAMI.2022.3222784
Fang, H., Xie, S., Tai, Y.-W., & Lu, C. (2017). RMPE: Regional multi-person pose estimation. IEEE International Conference on Computer Vision (pp. 2353–2362). IEEE. https://doi.org/10.48550/arXiv.1612.00137 DOI: https://doi.org/10.1109/ICCV.2017.256
Gamra, M. B., & Akhloufi, M. A. (2021). A review of deep learning techniques for 2D and 3D human pose estimation. Image Vis. Comput, 114, 104282. https://doi.org/10.1016/j.imavis.2021.104282 DOI: https://doi.org/10.1016/j.imavis.2021.104282
Gautam, B. P., Noda, Y., Gautam, R., Sharma, H. P., Sato, K., & Neupane, S. B. (2020). Body part localization and pose tracking by using deepercut algorithm for king cobra's BBL (Biting Behavior Learning). International Conference on Networking Network Applications (pp. 422–429). IEEE. https://doi.org/10.1109/NaNA51271.2020.00078 DOI: https://doi.org/10.1109/NaNA51271.2020.00078
Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). YOLOX: Exceeding YOLO series in 2021. ArXiv, abs/2107.08430. https://doi.org/10.48550/arXiv.2107.08430
Jegham, I., Khalifa, A. B., Alouani, I., & Mahjoub, M. A. (2020). Vision-based human action recognition: An overview and real world challenges. Forensic Science International: Digital Investigation, 32, 200901. https://doi.org/10.1016/j.fsidi.2019.200901 DOI: https://doi.org/10.1016/j.fsidi.2019.200901
Jeong, E., Kim, J., & Ha, S. (2022). TensorRT-Based framework and optimization methodology for deep learning inference on jetson boards. ACM Transactions on Embedded Computing Systems, 21, 1–26. https://doi.org/10.1145/3508391 DOI: https://doi.org/10.1145/3508391
Khirodkar, R., Chari, V., Agrawal, A., & Tyagi, A. (2021). Multi-Instance pose networks: rethinking top-down pose estimation. IEEE/CVF International Conference on Computer Vision (pp. 3102-3111). IEEE. https://doi.org/10.48550/arXiv.2101.11223 DOI: https://doi.org/10.1109/ICCV48922.2021.00311
Kong, Y., & Fu, Y. (2022). Human action recognition and prediction: A survey. International Journal of Computer Vision, 130(5), 1366-1401. https://doi.org/10.48550/arXiv.1806.11230 DOI: https://doi.org/10.1007/s11263-022-01594-9
Kreiss, S., Bertoni, L., & Alahi, A. (2021). OpenPifPaf: Composite fields for semantic keypoint detection and spatio-temporal association. IEEE Transactions on Intelligent Transportation Systems, 23, 13498–13511. https://doi.org/10.48550/arXiv.2103.02440 DOI: https://doi.org/10.1109/TITS.2021.3124981
Liu, M.-J., Wan, L., Wang, B., & Wang, T.-L. (2023). SE-YOLOv4: shuffle expansion YOLOv4 for pedestrian detection based on PixelShuffle. Applied Intelligence, 2023. https://doi.org/10.1007/s10489-023-04456-0 DOI: https://doi.org/10.1007/s10489-023-04456-0
Nguyen, S.-H., Le, T.-T.-H., Nguyen, H.-B., Phan, T.-T., Nguyen, C.-T., & Vu, H. (2022). Improving the Hand Pose Estimation from Egocentric Vision via HOPE-Net and Mask R-CNN. International Conference on Multimedia Analysis Pattern Recognition (pp. 1-6). IEEE. https://doi.org/10.1109/MAPR56351.2022.9924768 DOI: https://doi.org/10.1109/MAPR56351.2022.9924768
Park, K., Jang, W., Lee, W., Nam, K., Seong, K., Chai, K., & Li, W.-S. (2020). Real-time mask detection on google edge TPU. ArXiv, abs/2010.04427. https://doi.org/10.48550/arXiv.2010.04427
Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., & Schiele, B. (2016). DeepCut: Joint subset partition and labeling for multi person pose estimation. Conference on Computer Vision Pattern Recognition (pp. 4929–4937). IEEE. https://doi.org/10.1109/CVPR.2016.533 DOI: https://doi.org/10.1109/CVPR.2016.533
Sediqi, K. M., & Lee, H. J. (2021). A novel upsampling and context convolution for image semantic segmentation. Sensors, 21(6), 2170. https://doi.org/10.3390/s21062170 DOI: https://doi.org/10.3390/s21062170
Shiraishi, Y. (2020). Latest trend of edge aI devices. Journal of The Japan Institute of Electronics Packaging, 23(2), 145-149. https://doi.org/10.5104/jiep.23.145 DOI: https://doi.org/10.5104/jiep.23.145
Sipola, T., Alatalo, J., Kokkonen, T., & Rantonen, M. (2022). Artificial intelligence in the IoT Era: A Review of Edge AI Hardware and Software. 31st Conference of Open Innovations Association (pp. 320-331). IEEE. https://doi.org/10.23919/FRUCT54823.2022.9770931 DOI: https://doi.org/10.23919/FRUCT54823.2022.9770931
Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep high-resolution representation learning for human pose estimation. IEEE/CVF Conference on Computer Vision Pattern Recognition (pp. 5686–5696.) IEEE. https://doi.org/10.1109/CVPR.2019.00584. DOI: https://doi.org/10.1109/CVPR.2019.00584
Süzen, A. A., Duman, B., & Şen, B. (2020). Benchmark analysis of jetson TX2, jetson nano and raspberry PI using Deep-CNN. International Congress on Human-Computer Interaction, Optimization Robotic Applications (pp.1–5.) IEEE. https://doi.org/10.1109/HORA49412.2020.9152915 DOI: https://doi.org/10.1109/HORA49412.2020.9152915
Tran, H. Y., Bui, T. M., Pham, T.-L., & Le, V.-H. (2022). An evaluation of 2D human pose estimation based on ResNet backbone. Journal of Engineering Research and Sciences, 1(2), 59–67. https://doi.org/10.55708/js0103007 DOI: https://doi.org/10.55708/js0103007
Xiao, B., Wu, H., & Wei, Y. (2018). Simple baselines for human pose estimation and tracking. European Conference on Computer Vision. Lecture Notes in Computer Science (pp. 472–487). Springer. https://doi.org/10.1007/978-3-030-01231-1_29 DOI: https://doi.org/10.1007/978-3-030-01231-1_29
Zhang, H.-B., Zhang, Y.-X., Zhong, B., Lei, Q., Yang, L., Du, J.-X., & Chen, D.-S. (2019). A comprehensive survey of vision-based human action recognition methods. Sensors, 19(5), 1005–1016. https://doi.org/10.3390/s19051005 DOI: https://doi.org/10.3390/s19051005
Article Details
Abstract views: 1080
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
