A LIGHTWEIGHT MULTI-PERSON POSE ESTIMATION SCHEME BASED ON JETSON NANO

Lei Liu

13605545615@163.com
College of Computing and Information Technologies, National University Manila (Philippines)
https://orcid.org/0000-0002-1807-6906

Eric B. Blancaflor


Mapua University, School of Information Technology, Philippines (Philippines)

Mideth Abisado


National University, College of Computing and Information Technologies, Philippines (Philippines)
https://orcid.org/0000-0003-4215-7260

Abstract

As the basic technology of human action recognition, pose estimation is attracting more and more researchers' attention, while edge application scenarios pose a higher challenge. This paper proposes a lightweight multi-person pose estimation scheme to meet the needs of real-time human action recognition on the edge end. This scheme uses AlphaPose to extract human skeleton nodes, and adds ResNet and Dense Upsampling Revolution to improve its accuracy. Meanwhile, we use YOLO to enhance AlphaPose’s support for multi-person pose estimation, and optimize the proposed model with TensorRT. In addition, this paper sets Jetson Nano as the Edge AI deployment device of the proposed model and successfully realizes the model migration to the edge end. The experimental results show that the speed of the optimized object detection model can reach 20 FPS, and the optimized multi-person pose estimation model can reach 10 FPS. With the image resolution of 320×240, the model’s accuracy is 73.2%, which can meet the real-time requirements. In short, our scheme can provide a basis for lightweight multi-person action recognition scheme on the edge end.

Supporting Agencies

This study received support from the following sources: the University Natural Science Foundation of Anhui Province (Grant no. 2022AH010085), the University Natural Science Foundation of Anhui Province (Grant no. KJ2021A0970), the Huainan Normal University Scientific Research Project (Grant no. 2022XJZD030), and the Key Research and Development Plan Project Foundation of Huainan (Grant no. 2021A248).

Keywords:

human pose estimation, lightweight model, Edge AI, deep learning, computer vision

Akshatha, K. R., Karunakar, A. K., Shenoy, S. B., Pai, A. K., Nagaraj, N. H., & Rohatgi, S. S. (2022). Human detection in aerial thermal images using faster R-CNN and SSD algorithms. Electronics, 11(7), 1151. https://doi.org/10.3390/electronics11071151
DOI: https://doi.org/10.3390/electronics11071151   Google Scholar

Alnuaim, A. A., Zakariah, M., Hatamleh, W. A., Tarazi, H., Tripathi, V., & Amoatey, E. T. (2022). Humancomputer interaction with hand gesture recognition using ResNet and MobileNet. Computational
  Google Scholar

Intelligence Neuroscience, 2022, 8777355. https://doi.org/10.1155/2022/8777355
DOI: https://doi.org/10.1155/2022/8777355   Google Scholar

Bertasius, G., Feichtenhofer, C., Tran, D., Shi, J., & Torresani, L. (2019). Learning temporal pose estimation from sparsely-labeled Videos. ArXiv, abs/1906.04016. https://doi.org/10.48550/arXiv.1906.04016
  Google Scholar

Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2016). Realtime multi-person 2D pose estimation using part affinity fields. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (pp. 1302–1310). IEEE. https://doi.org/10.1109/CVPR.2017.143.
DOI: https://doi.org/10.1109/CVPR.2017.143   Google Scholar

Chen, W., Jiang, Z., Guo, H., & Ni, X. (2020). Fall Detection Based on Key Points of Human-Skeleton Using OpenPose. Symmetry, 12(5), 744. https://doi.org/10.3390/sym12050744
DOI: https://doi.org/10.3390/sym12050744   Google Scholar

Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., & Sun, J. (2018). Cascaded pyramid network for multi-person pose estimation. Proceedings of the IEEE Computer Society Conference on Computer Vision Pattern Recognition (pp. 7103–7112). IEEE. https://doi.org/10.1109/CVPR.2018.00742
DOI: https://doi.org/10.1109/CVPR.2018.00742   Google Scholar

Chung, J.-L., Ong, L.-Y., & Leow, M. C. (2022). Comparative analysis of skeleton-based human pose estimation. Future Internet, 14(12), 380. https://doi.org/10.3390/fi14120380
DOI: https://doi.org/10.3390/fi14120380   Google Scholar

Dewangan, D. K., & Sahu, S. P. (2021). Deep learning-based speed bump detection model for intelligent vehicle system using raspberry pi. IEEE Sensors Journal, 21, 3570–3578. https://doi.org/10.1109/JSEN.2020.3027097
DOI: https://doi.org/10.1109/JSEN.2020.3027097   Google Scholar

Fang, H., Li, J., Tang, H., Xu, C., Zhu, H., Xiu, Y., Li, Y.-L., & Lu, C. (2022). AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time. ArXiv, abs/2211.03375. https://doi.org/10.48550/arXiv.2211.03375
DOI: https://doi.org/10.1109/TPAMI.2022.3222784   Google Scholar

Fang, H., Xie, S., Tai, Y.-W., & Lu, C. (2017). RMPE: Regional multi-person pose estimation. IEEE International Conference on Computer Vision (pp. 2353–2362). IEEE. https://doi.org/10.48550/arXiv.1612.00137
DOI: https://doi.org/10.1109/ICCV.2017.256   Google Scholar

Gamra, M. B., & Akhloufi, M. A. (2021). A review of deep learning techniques for 2D and 3D human pose estimation. Image Vis. Comput, 114, 104282. https://doi.org/10.1016/j.imavis.2021.104282
DOI: https://doi.org/10.1016/j.imavis.2021.104282   Google Scholar

Gautam, B. P., Noda, Y., Gautam, R., Sharma, H. P., Sato, K., & Neupane, S. B. (2020). Body part localization and pose tracking by using deepercut algorithm for king cobra's BBL (Biting Behavior Learning). International Conference on Networking Network Applications (pp. 422–429). IEEE. https://doi.org/10.1109/NaNA51271.2020.00078
DOI: https://doi.org/10.1109/NaNA51271.2020.00078   Google Scholar

Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). YOLOX: Exceeding YOLO series in 2021. ArXiv, abs/2107.08430. https://doi.org/10.48550/arXiv.2107.08430
  Google Scholar

Jegham, I., Khalifa, A. B., Alouani, I., & Mahjoub, M. A. (2020). Vision-based human action recognition: An overview and real world challenges. Forensic Science International: Digital Investigation, 32, 200901. https://doi.org/10.1016/j.fsidi.2019.200901
DOI: https://doi.org/10.1016/j.fsidi.2019.200901   Google Scholar

Jeong, E., Kim, J., & Ha, S. (2022). TensorRT-Based framework and optimization methodology for deep learning inference on jetson boards. ACM Transactions on Embedded Computing Systems, 21, 1–26. https://doi.org/10.1145/3508391
DOI: https://doi.org/10.1145/3508391   Google Scholar

Khirodkar, R., Chari, V., Agrawal, A., & Tyagi, A. (2021). Multi-Instance pose networks: rethinking top-down pose estimation. IEEE/CVF International Conference on Computer Vision (pp. 3102-3111). IEEE. https://doi.org/10.48550/arXiv.2101.11223
DOI: https://doi.org/10.1109/ICCV48922.2021.00311   Google Scholar

Kong, Y., & Fu, Y. (2022). Human action recognition and prediction: A survey. International Journal of Computer Vision, 130(5), 1366-1401. https://doi.org/10.48550/arXiv.1806.11230
DOI: https://doi.org/10.1007/s11263-022-01594-9   Google Scholar

Kreiss, S., Bertoni, L., & Alahi, A. (2021). OpenPifPaf: Composite fields for semantic keypoint detection and spatio-temporal association. IEEE Transactions on Intelligent Transportation Systems, 23, 13498–13511. https://doi.org/10.48550/arXiv.2103.02440
DOI: https://doi.org/10.1109/TITS.2021.3124981   Google Scholar

Liu, M.-J., Wan, L., Wang, B., & Wang, T.-L. (2023). SE-YOLOv4: shuffle expansion YOLOv4 for pedestrian detection based on PixelShuffle. Applied Intelligence, 2023. https://doi.org/10.1007/s10489-023-04456-0
DOI: https://doi.org/10.1007/s10489-023-04456-0   Google Scholar

Nguyen, S.-H., Le, T.-T.-H., Nguyen, H.-B., Phan, T.-T., Nguyen, C.-T., & Vu, H. (2022). Improving the Hand Pose Estimation from Egocentric Vision via HOPE-Net and Mask R-CNN. International Conference on Multimedia Analysis Pattern Recognition (pp. 1-6). IEEE. https://doi.org/10.1109/MAPR56351.2022.9924768
DOI: https://doi.org/10.1109/MAPR56351.2022.9924768   Google Scholar

Park, K., Jang, W., Lee, W., Nam, K., Seong, K., Chai, K., & Li, W.-S. (2020). Real-time mask detection on google edge TPU. ArXiv, abs/2010.04427. https://doi.org/10.48550/arXiv.2010.04427
  Google Scholar

Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., & Schiele, B. (2016). DeepCut: Joint subset partition and labeling for multi person pose estimation. Conference on Computer Vision Pattern Recognition (pp. 4929–4937). IEEE. https://doi.org/10.1109/CVPR.2016.533
DOI: https://doi.org/10.1109/CVPR.2016.533   Google Scholar

Sediqi, K. M., & Lee, H. J. (2021). A novel upsampling and context convolution for image semantic segmentation. Sensors, 21(6), 2170. https://doi.org/10.3390/s21062170
DOI: https://doi.org/10.3390/s21062170   Google Scholar

Shiraishi, Y. (2020). Latest trend of edge aI devices. Journal of The Japan Institute of Electronics Packaging, 23(2), 145-149. https://doi.org/10.5104/jiep.23.145
DOI: https://doi.org/10.5104/jiep.23.145   Google Scholar

Sipola, T., Alatalo, J., Kokkonen, T., & Rantonen, M. (2022). Artificial intelligence in the IoT Era: A Review of Edge AI Hardware and Software. 31st Conference of Open Innovations Association (pp. 320-331). IEEE. https://doi.org/10.23919/FRUCT54823.2022.9770931
DOI: https://doi.org/10.23919/FRUCT54823.2022.9770931   Google Scholar

Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep high-resolution representation learning for human pose estimation. IEEE/CVF Conference on Computer Vision Pattern Recognition (pp. 5686–5696.) IEEE. https://doi.org/10.1109/CVPR.2019.00584.
DOI: https://doi.org/10.1109/CVPR.2019.00584   Google Scholar

Süzen, A. A., Duman, B., & Şen, B. (2020). Benchmark analysis of jetson TX2, jetson nano and raspberry PI using Deep-CNN. International Congress on Human-Computer Interaction, Optimization Robotic Applications (pp.1–5.) IEEE. https://doi.org/10.1109/HORA49412.2020.9152915
DOI: https://doi.org/10.1109/HORA49412.2020.9152915   Google Scholar

Tran, H. Y., Bui, T. M., Pham, T.-L., & Le, V.-H. (2022). An evaluation of 2D human pose estimation based on ResNet backbone. Journal of Engineering Research and Sciences, 1(2), 59–67. https://doi.org/10.55708/js0103007
DOI: https://doi.org/10.55708/js0103007   Google Scholar

Xiao, B., Wu, H., & Wei, Y. (2018). Simple baselines for human pose estimation and tracking. European Conference on Computer Vision. Lecture Notes in Computer Science (pp. 472–487). Springer. https://doi.org/10.1007/978-3-030-01231-1_29
DOI: https://doi.org/10.1007/978-3-030-01231-1_29   Google Scholar

Zhang, H.-B., Zhang, Y.-X., Zhong, B., Lei, Q., Yang, L., Du, J.-X., & Chen, D.-S. (2019). A comprehensive survey of vision-based human action recognition methods. Sensors, 19(5), 1005–1016. https://doi.org/10.3390/s19051005
DOI: https://doi.org/10.3390/s19051005   Google Scholar

Download


Published
2023-03-31

Cited by

Liu, L., Blancaflor, E. B., & Abisado, M. (2023). A LIGHTWEIGHT MULTI-PERSON POSE ESTIMATION SCHEME BASED ON JETSON NANO. Applied Computer Science, 19(1), 1–14. https://doi.org/10.35784/acs-2023-01

Authors

Lei Liu 
13605545615@163.com
College of Computing and Information Technologies, National University Manila Philippines
https://orcid.org/0000-0002-1807-6906

Authors

Eric B. Blancaflor 

Mapua University, School of Information Technology, Philippines Philippines

Authors

Mideth Abisado 

National University, College of Computing and Information Technologies, Philippines Philippines
https://orcid.org/0000-0003-4215-7260

Statistics

Abstract views: 612
PDF downloads: 364


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.