A COMPARATIVE STUDY ON PERFORMANCE OF BASIC AND ENSEMBLE CLASSIFIERS WITH VARIOUS DATASETS
Article Sidebar
Open full text
Issue Vol. 19 No. 1 (2023)
-
A LIGHTWEIGHT MULTI-PERSON POSE ESTIMATION SCHEME BASED ON JETSON NANO
Lei Liu; Eric B. Blancaflor, Mideth Abisado1-14
-
USAGE OF IOT EDGE APPROACH FOR ROAD QUALITY ANALYSIS
Marcin Badurowicz, Sebastian Łagowski15-24
-
CAN THE SYSTEM, INFORMATION, AND SERVICE QUALITIES IMPACT EMPLOYEE LEARNING, ADAPTABILITY, AND JOB SATISFACTION?
Zahid Zamir25-46
-
ARDP: SIMPLIFIED MACHINE LEARNING PREDICTOR FOR MISSING UNIDIMENSIONAL ACADEMIC RESULTS DATASET
Olufemi Folorunso, Olufemi Akinyede, Kehinde Agbele47-63
-
SYSTEMATIC LITERATURE REVIEW OF IOT METRICS
Donatien Koulla Moulla, Ernest Mnkandla, Alain Abran64-81
-
PREDICTING BANKING STOCK PRICES USING RNN, LSTM, AND GRU APPROACH
Dias Satria82-94
-
IMPROVING MATERIAL FLOW IN A MODIFIED PRODUCTION SYSTEM
Dariusz Plinta, Katarzyna Radwan95-106
-
A COMPARATIVE STUDY ON PERFORMANCE OF BASIC AND ENSEMBLE CLASSIFIERS WITH VARIOUS DATASETS
Archana Gunakala, Afzal Hussain Shahid107-132
-
INTELLIGENT CONTROLLING THE GRIPPING FORCE OF AN OBJECT BY TWO COMPUTER-CONTROLLED COOPERATIVE ROBOTS
ABDERRAHIM BAHANI, El Houssine Ech-Chhibat, Hassan SAMRI, Laila AIT MAALEM , Hicham AIT EL ATTAR133-151
-
RECOGNITION OF SPORTS EXERCISES USING INERTIAL SENSOR TECHNOLOGY
Pascal Krutz, Matthias Rehm, Holger Schlegel, Martin Dix152-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Classification plays a critical role in machine learning (ML) systems for processing images, text and high -dimensional data. Predicting class labels from training data is the primary goal of classification. An optimal model for a particular classification problem is chosen on the basis of the model's performance and execution time. This paper compares and analyses the performance of basic as well as ensemble classifiers utilizing 10 -fold cross validation and also discusses their essential concepts, advantages, and disadvantages. In this study five basic classifiers namely Naïve Bayes (NB), Multi-layer Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF) and the ensemble of all the five classifiers along with few more combinations are compared with five University of California Irvine (UCI) ML Repository datasets and a Diabetes Health Indicators dataset from kaggle repository. To analyze and compare the performance of classifiers, evaluation metrics like Accuracy, Recall, Precision, Area Under Curve (AUC) and F-Score are used. Experimental results showed that SVM performs best on two out of the six datasets (Diabetes Health Indicators and waveform), RF performs best for Arrhythmia, Sonar, Tic-tac-toe datasets, and the best ensemble combination is found to be DT+SVM+RF on Ionosphere dataset having respective accuracies 72.58%, 90.38%, 81.63%, 73.59%, 94.78% and 94.01% and the proposed ensemble combinations outperformed over the conventional models for few datasets.
Keywords:
References
Alshayeji, M. H., Ellethy, H., Abed, S., & Gupta, R. (2022). Computer-aided detection of breast cancer on the Wisconsin dataset: An artificial neural networks approach. Biomedical Signal Processing and Control, 71(PA), 103141. https://doi.org/10.1016/j.bspc.2021.103141 DOI: https://doi.org/10.1016/j.bspc.2021.103141
Alshdaifat, E., Al-hassan, M., & Aloqaily, A. (2021). Effective heterogeneous ensemble classification: An alternative approach for selecting base classifiers. ICT Express, 7(3), 342–349. https://doi.org/10.1016/j.icte.2020.11.005 DOI: https://doi.org/10.1016/j.icte.2020.11.005
Baumann, P., Hochbaum, D. S., & Yang, Y. T. (2019). A comparative study of the leading machine learning techniques and two new optimization algorithms. European Journal of Operational Research, 272(3), 1041–1057. https://doi.org/10.1016/j.ejor.2018.07.009 DOI: https://doi.org/10.1016/j.ejor.2018.07.009
bin Basir, M. A., & binti Ahmad, F. (2017). New Feature Selection Model Based Ensemble Rule Classifiers Method for Dataset Classification. International Journal of Artificial Intelligence & Applications, 8(2), 37–43. https://doi.org/10.5121/ijaia.2017.8204 DOI: https://doi.org/10.5121/ijaia.2017.8204
Chandrika, Divya, C., Gowramma, G. S., & Varun, C. R. (2018). A comparative analysis on evaluation of classification algorithms based on ionospheric data. International Journal of Computer Sciences and Engineering, 6(5), 636–640. https://doi.org/10.26438/ijcse/v6i5.636640 DOI: https://doi.org/10.26438/ijcse/v6i5.636640
Consuegra-Ayala, J. P., Gutiérrez, Y., Almeida-Cruz, Y., & Palomar, M. (2022). Intelligent ensembling of autoML system outputs for solving classification problems. Information Sciences, 609, 766–780. https://doi.org/10.1016/j.ins.2022.07.061 DOI: https://doi.org/10.1016/j.ins.2022.07.061
Ecemis, C., Acu, N., & Sari, Z. (2022). Classification of Imbalanced Cardiac Arrhythmia Data. European Journal of Science and Technology, 34, 546-552. https://doi.org/10.31590/ejosat.1083423 DOI: https://doi.org/10.31590/ejosat.1083423
Fang, X., Klawohn, J., De Sabatino, A., Kundnani, H., Ryan, J., Yu, W., & Hajcak, G. (2022). Accurate classification of depression through optimized machine learning models on high-dimensional noisy data. Biomedical Signal Processing and Control, 71(Part B), 103237. https://doi.org/10.1016/j.bspc.2021.103237 DOI: https://doi.org/10.1016/j.bspc.2021.103237
Farhat, N. H. (1992). Photonit neural networks and learning mathines the role of electron-trapping materials. IEEE Expert-Intelligent Systems and Their Applications, 7(5), 63–72. https://doi.org/10.1109/64.163674 DOI: https://doi.org/10.1109/64.163674
Fath, A. H., Madanifar, F., & Abbasi, M. (2020). Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum, 6(1), 80–91. https://doi.org/10.1016/j.petlm.2018.12.002 DOI: https://doi.org/10.1016/j.petlm.2018.12.002
Ganie, S. M., & Malik, M. B. (2022). An Ensemble Machine Learning Approach for Predicting Type-II Diabetes Mellitus based on Lifestyle Indicators. Healthcare Analytics, 2, 100092. https://doi.org/10.1016/j.health.2022.100092 DOI: https://doi.org/10.1016/j.health.2022.100092
Gupta, V., Srinivasan, S., & Kudli, S. S. (2014). Prediction and Classification of Cardiac Arrhythmia. https://cs229.stanford.edu/proj2014/Vasu%20Gupta,%20Sharan%20Srinivasan,%20Sneha%20Kudli,%20Prediction%20and%20Classification%20of%20Cardiac%20Arrhythmia.pdf
Hongle, D., Yan, Z., Lin, Z., Yeh-Cheng, C., Gang, K., & Chen, Y.-C. (2022). Selective Ensemble Learning Algorithm for Imbalanced Dataset. Preprint. https://doi.org/10.21203/rs.3.rs-721493/v1 DOI: https://doi.org/10.21203/rs.3.rs-721493/v1
Jia, J., & Qiu, W. (2020). Research on an ensemble classification algorithm based on differential privacy. IEEE Access, 8, 93499–93513. https://doi.org/10.1109/ACCESS.2020.2995058 DOI: https://doi.org/10.1109/ACCESS.2020.2995058
Kilincer, I. F., Ertam, F., & Sengur, A. (2021). Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks, 188, 107840. https://doi.org/10.1016/j.comnet.2021.107840 DOI: https://doi.org/10.1016/j.comnet.2021.107840
Kushwah, J. S., Kumar, A., Patel, S., Soni, R., Gawande, A., & Gupta, S. (2021). Comparative study of regressor and classifier with decision tree using modern tools. Materials Today: Proceedings, 56(6), 3571-3576. https://doi.org/10.1016/j.matpr.2021.11.635 DOI: https://doi.org/10.1016/j.matpr.2021.11.635
Ma, T. M., Yamamori, K., & Thida, A. (2020). A comparative approach to naïve bayes classifier and support vector machine for email spam classification. 2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020 (pp. 324–326). IEEE. https://doi.org/10.1109/GCCE50665.2020.9291921 DOI: https://doi.org/10.1109/GCCE50665.2020.9291921
Maniruzzaman, M., Jahanur Rahman, M., Ahammed, B., Abedin, M. M., Suri, H. S., Biswas, M., El-Baz, A., Bangeas, P., Tsoulfas, G., & Suri, J. S. (2019). Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Computer Methods and Programs in Biomedicine, 176, 173–193. https://doi.org/10.1016/j.cmpb.2019.04.008 DOI: https://doi.org/10.1016/j.cmpb.2019.04.008
Mohamed, A. R. (2017). Comparative Study of Four Supervised Machine Learning Techniques for Classification. International Journal of Applied Science and Technology, 7(2), 5–18.
Nazari, E., Aghemiri, M., Avan, A., Mehrabian, A., & Tabesh, H. (2021). Machine learning approaches for classification of colorectal cancer with and without feature selection method on microarray data. Gene Reports, 25, 101419. https://doi.org/10.1016/j.genrep.2021.101419 DOI: https://doi.org/10.1016/j.genrep.2021.101419
Ngo, G., Beard, R., & Chandra, R. (2022). Evolutionary bagging for ensemble learning. Neurocomputing, 510, 1-14. https://doi.org/10.1016/j.neucom.2022.08.055 DOI: https://doi.org/10.1016/j.neucom.2022.08.055
Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78. https://doi.org/10.26438/ijcse/v6i10.7478 DOI: https://doi.org/10.26438/ijcse/v6i10.7478
Patel, N., & Upadhyay, S. (2012). Study of various decision tree pruning methods with their empirical comparison in WEKA. International Journal of Computer Applications, 60(12), 20–25. https://doi.org/10.5120/9744-4304 DOI: https://doi.org/10.5120/9744-4304
Priyanka, & Kumar, D. (2020). Decision tree classifier: A detailed survey. International Journal of Information and Decision Sciences, 12(3), 246–269. https://doi.org/10.1504/ijids.2020.108141 DOI: https://doi.org/10.1504/IJIDS.2020.108141
Pugliese, R., Regondi, S., & Marini, R. (2021). Machine learning-based approach: global trends, research directions, and regulatory standpoints. Data Science and Management, 4, 19–29. https://doi.org/10.1016/j.dsm.2021.12.002 DOI: https://doi.org/10.1016/j.dsm.2021.12.002
Punyapornwithaya, V., Klaharn, K., Arjkumpa, O., & Sansamur, C. (2022). Exploring the predictive capability of machine learning models in identifying foot and mouth disease outbreak occurrences in cattle farms in an endemic setting of Thailand. Preventive Veterinary Medicine, 207, 105706. https://doi.org/10.1016/J.PREVETMED.2022.105706 DOI: https://doi.org/10.1016/j.prevetmed.2022.105706
Qian, X., Zhou, Z., Hu, J., Zhu, J., Huang, H., & Dai, Y. (2021). A comparative study of kernel-based vector machines with probabilistic outputs for medical diagnosis. Biocybernetics and Biomedical Engineering, 41(4), 1486–1504. https://doi.org/10.1016/j.bbe.2021.09.003 DOI: https://doi.org/10.1016/j.bbe.2021.09.003
Revathi, A., Kaladevi, R., Ramana, K., Jhaveri, R. H., Kumar, M. R., & Kumar, M. S. P. (2022). Early detection of cognitive decline using machine learning algorithm and cognitive ability test. Security and Communication Networks, 2022, 4190023. https://doi.org/10.1155/2022/4190023 DOI: https://doi.org/10.1155/2022/4190023
Rezvani, S., & Wang, X. (2022). Neurocomputing intuitionistic fuzzy twin support vector machines for imbalanced data. Neurocomputing, 507, 16–25. https://doi.org/10.1016/j.neucom.2022.07.083 DOI: https://doi.org/10.1016/j.neucom.2022.07.083
Sevinç, E. (2022). An empowered AdaBoost algorithm implementation: A COVID-19 dataset study. Computers and Industrial Engineering, 165, 107912. https://doi.org/10.1016/j.cie.2021.107912 DOI: https://doi.org/10.1016/j.cie.2021.107912
Shafi, A. S. M., Molla, M. M. I., Jui, J. J., & Rahman, M. M. (2020). Detection of colon cancer based on microarray dataset using machine learning as a feature selection and classification techniques. SN Applied Sciences, 2(7), 1–8. https://doi.org/10.1007/s42452-020-3051-2 DOI: https://doi.org/10.1007/s42452-020-3051-2
Shi, Q., Suganthan, P. N., & Katuwal, R. (2022). Weighting and pruning based ensemble deep random vector functional link network for tabular data classification. arXiv:2201.05809. http://arxiv.org/abs/2201.05809 DOI: https://doi.org/10.1016/j.patcog.2022.108879
Swathy, M., & Saruladha, K. (2021). A comparative study of classification and prediction of cardio-vascular diseases (cvd) using machine learning and deep learning techniques. ICT Express, 8(1), 109-116. https://doi.org/10.1016/j.icte.2021.08.021 DOI: https://doi.org/10.1016/j.icte.2021.08.021
Tewari, S., & Dwivedi, U. D. (2020). A comparative study of heterogeneous ensemble methods for the identification of geological lithofacies. Journal of Petroleum Exploration and Production Technology, 10(5), 1849–1868. https://doi.org/10.1007/s13202-020-00839-y DOI: https://doi.org/10.1007/s13202-020-00839-y
Thirunavukkarasu, K., Singh, A. S., Rai, P., & Gupta, S. (2018). Classification of IRIS dataset using classification based KNN Algorithm in supervised learning. 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018 (pp. 4–7). IEEE. https://doi.org/10.1109/CCAA.2018.8777643 DOI: https://doi.org/10.1109/CCAA.2018.8777643
Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 1–16. https://doi.org/10.1186/s12911-019-1004-8 DOI: https://doi.org/10.1186/s12911-019-1004-8
Wade, B. S. C., Joshi, S. H., Gutman, B. A., & Thompson, P. M. (2017). Machine learning on high dimensional shape data from subcortical brain surfaces: A comparison of feature selection and classification methods. Pattern Recognition, 63, 731–739. https://doi.org/10.1016/j.patcog.2016.09.034 DOI: https://doi.org/10.1016/j.patcog.2016.09.034
Wei, X., Zou, N., Zeng, L., & Pei, Z. (2022). PolyJet 3D printing: Predicting color by multilayer perceptron neural network. Annals of 3D Printed Medicine, 5, 100049. https://doi.org/10.1016/j.stlm.2022.100049 DOI: https://doi.org/10.1016/j.stlm.2022.100049
Yakut, Ö., & Bolat, E. D. (2022). A high-performance arrhythmic heartbeat classification using ensemble learning method and PSD based feature extraction approach. Biocybernetics and Biomedical Engineering, 42(2), 667–680. https://doi.org/10.1016/j.bbe.2022.05.004 DOI: https://doi.org/10.1016/j.bbe.2022.05.004
Yogita, B., Akanksha, M., Shefali, A., Tanya, M., & Gresha, B. (2020). Classification of Cardiac Arrhythmia Using Kernelized SVM. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184) (pp. 922-926). IEEE. https://doi.org/10.1109/ICOEI48184.2020.9143000. DOI: https://doi.org/10.1109/ICOEI48184.2020.9143000
Article Details
Abstract views: 659
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
