APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES
Mariano LARIOS
mariano.larios@correo.buap.mxBenemérita Universidad Autónoma de Puebla (Mexico)
https://orcid.org/0000-0002-2089-0608
Perfecto M. QUINTERO-FLORES
Universidad Autónoma de Tlaxcala (Facultad de Ciencias Básicas, Ingeniería y Tecnología), México (Mexico)
Mario ANZURES-GARCÍA
Benemérita Universidad Autónoma de Puebla (Facultad de Ciencias de la Computación), México (Mexico)
https://orcid.org/0000-0001-6138-3226
Miguel CAMACHO-HERNANDEZ
Benemérita Universidad Autónoma de Puebla (Facultad de Ciencias de la Computación), México, (Mexico)
https://orcid.org/0009-0002-8627-9876
Abstract
This paper presents the application of a task scheduling algorithm called Fan on an artificial intelligence technique as genetic algorithms for the problem of finding minima in objective functions, where the equations are predefined to measure the return on an investment. This work combines the methodologies of exploration and exploitation of a population, obtaining results with good aptitudes until finding a better learning based on conditions of not ending until an individual delivers a better aptitude, complying with the established restrictions, exhausting all possible options and fulfilling a stop condition. A real-time task planning algorithm was applied based on consensus techniques. A software tool was developed, and the scheduler called FAN was adapted that contemplates the execution of periodic, aperiodic, and sporadic tasks focused on controlled environments, considering that strict time restrictions are met. In the first phase of the work, it is shown how convergence precipitates to an evolution, this is done in few iterations. In a second stage, exploitation was improved, giving the algorithm a better performance in convergence and feasibility. As a result, there is the exploitation of the population and applying iterations with the fan algorithm and better aptitudes were obtained that occur through asynchronized processes under real-time planning concurrently.
Supporting Agencies
Keywords:
Real-time task scheduling, Genetic algorithms, Concurrent computingReferences
Bertuccelli, L., Beckers, W., & Cummings, M. (2010, August). Developing operator models for UAV search scheduling. In AIAA Guidance, Navigation, and Control Conference (p. 7863).
DOI: https://doi.org/10.2514/6.2010-7863
Google Scholar
Cheng, S. L., & Hwang, C. (2001). Optimal approximation of linear systems by a differential evolution algorithm. IEEE Transactions on Systems, man, and cybernetics-part a: systems and humans, 31(6), 698-707.
DOI: https://doi.org/10.1109/3468.983425
Google Scholar
Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics and engineering, 186(2-4), 311-338.
DOI: https://doi.org/10.1016/S0045-7825(99)00389-8
Google Scholar
Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. simulation, 76(2), 60-68.
DOI: https://doi.org/10.1177/003754970107600201
Google Scholar
Jeong, S., Simeone, O., & Kang, J. (2017). Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning. IEEE Transactions on Vehicular Technology, 67(3), 2049-2063.
DOI: https://doi.org/10.1109/TVT.2017.2706308
Google Scholar
Kim, B., Jung, J., Min, H., & Heo, J. (2021). Energy efficient and real-time remote sensing in AI-powered drone. Mobile Information Systems, 2021.
DOI: https://doi.org/10.1155/2021/6650053
Google Scholar
Larios-Gómez, M., Carrera, J. M., Anzures-García, M., Aldama-Díaz, A., & Trinidad-García, G. (2019). A Scheduling Algorithm for a Platform in Real Time. In International Conference on Supercomputing in Mexico (pp. 3-10). Springer, Cham.
DOI: https://doi.org/10.1007/978-3-030-10448-1_1
Google Scholar
Lim, G. J., Kim, S., Cho, J., Gong, Y., & Khodaei, A. (2016). Multi-UAV pre-positioning and routing for power network damage assessment. IEEE Transactions on Smart Grid, 9(4), 3643-3651.
DOI: https://doi.org/10.1109/TSG.2016.2637408
Google Scholar
Nasiri, J., & Khiyabani, F. M. (2018). A whale optimization algorithm (WOA) approach for clustering. Cogent Mathematics & Statistics, 5(1), 1483565.
DOI: https://doi.org/10.1080/25742558.2018.1483565
Google Scholar
Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2018). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603-615.
DOI: https://doi.org/10.1007/s10845-015-1039-3
Google Scholar
Barbosa-Mendez, M. A., Portilla-Flores, E. A., Vega-Alvarado, E., Calva-Yáñez, M. B., & Sepúlveda-Cervantes, G. (2019, September). A harmony search variant based on a novel synthesized approach for constrained numerical optimization. In 2019 16th international conference on electrical engineering, computing science and automatic control (CCE) (pp. 1-6). IEEE.
DOI: https://doi.org/10.1109/ICEEE.2019.8884555
Google Scholar
Portilla-Flores, E. A., Sánchez-Márquez, Á., Flores-Pulido, L., Vega-Alvarado, E., Yáñez, M. B. C., Aponte-Rodríguez, J. A., & Niño-Suárez, P. A. (2017). Enhancing the harmony search algorithm performance on constrained numerical optimization. IEEE Access, 5, 25759-25780.
DOI: https://doi.org/10.1109/ACCESS.2017.2771741
Google Scholar
Ramasubramanian, V., Haas, Z. J., & Sirer, E. G. (2003, June). SHARP: A hybrid adaptive routing protocol for mobile ad hoc networks. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing (pp. 303-314).
DOI: https://doi.org/10.1145/778415.778450
Google Scholar
Saffre, F., Hildmann, H., Karvonen, H., & Lind, T. (2022). Self-swarming for multi-robot systems deployed for situational awareness. In New Developments and Environmental Applications of Drones (pp. 51-72). Springer, Cham.
DOI: https://doi.org/10.1007/978-3-030-77860-6_3
Google Scholar
Seyedali, M., & Andrew, L. (2016). The Whale Optimization Algorithm Advances in Engineering Software.
Google Scholar
Soria, E., Schiano, F., & Floreano, D. (2021). Distributed Predictive Drone Swarms in Cluttered Environments. IEEE Robotics and Automation Letters, 7(1), 73-80.
DOI: https://doi.org/10.1109/LRA.2021.3118091
Google Scholar
Sreedhar, M., Reddy, S. A. N., Chakra, S. A., Kumar, T. S., Reddy, S. S., & Kumar, B. V. (2020). A review on advanced optimization algorithms in multidisciplinary applications. Recent Trends in Mechanical Engineering: Select Proceedings of ICIME 2019, 745-755.
DOI: https://doi.org/10.1007/978-981-15-1124-0_66
Google Scholar
Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341.
DOI: https://doi.org/10.1023/A:1008202821328
Google Scholar
Wu, Q., & Zhang, R. (2018). Common throughput maximization in UAV-enabled OFDMA systems with delay consideration. IEEE Transactions on Communications, 66(12), 6614-6627.
DOI: https://doi.org/10.1109/TCOMM.2018.2865922
Google Scholar
Authors
Mariano LARIOSmariano.larios@correo.buap.mx
Benemérita Universidad Autónoma de Puebla Mexico
https://orcid.org/0000-0002-2089-0608
Authors
Perfecto M. QUINTERO-FLORESUniversidad Autónoma de Tlaxcala (Facultad de Ciencias Básicas, Ingeniería y Tecnología), México Mexico
Authors
Mario ANZURES-GARCÍABenemérita Universidad Autónoma de Puebla (Facultad de Ciencias de la Computación), México Mexico
https://orcid.org/0000-0001-6138-3226
Authors
Miguel CAMACHO-HERNANDEZBenemérita Universidad Autónoma de Puebla (Facultad de Ciencias de la Computación), México, Mexico
https://orcid.org/0009-0002-8627-9876
Statistics
Abstract views: 163PDF downloads: 74
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Manar AL-ABAJI, Zohair AL-AMEEN, SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER , Applied Computer Science: Vol. 20 No. 4 (2024)
- Ihor PYSMENNYI, Anatolii PETRENKO, Roman KYSLYI, GRAPH-BASED FOG COMPUTING NETWORK MODEL , Applied Computer Science: Vol. 16 No. 4 (2020)
- Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE, THE UTILIZATION OF 6G IN INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Tomasz NOWICKI, Adam GREGOSIEWICZ, Zbigniew ŁAGODOWSKI, PRODUCTIVITY OF A LOW-BUDGET COMPUTER CLUSTER APPLIED TO OVERCOME THE N-BODY PROBLEM , Applied Computer Science: Vol. 17 No. 4 (2021)
- K. Raju, Niranjan N Chiplunkar, PERFORMANCE ENHANCEMENT OF CUDA APPLICATIONS BY OVERLAPPING DATA TRANSFER AND KERNEL EXECUTION , Applied Computer Science: Vol. 17 No. 3 (2021)
- Pannangi Naresh, R. Suguna, IMPLEMENTATION OF DYNAMIC AND FAST MINING ALGORITHMS ON INCREMENTAL DATASETS TO DISCOVER QUALITATIVE RULES , Applied Computer Science: Vol. 17 No. 3 (2021)
- Anitha Rani PALAKAYALA, Kuppusamy P, A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY , Applied Computer Science: Vol. 20 No. 3 (2024)
- Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL, MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 20 No. 2 (2024)
- Raphael Olufemi AKINYEDE, Temitayo Elijah BALOGUN, Abiodun Boluwade ROTIMI, Oluwasefunmi Busola FAMODIMU, A CUSTOMER-CENTRIC APPLICATION FOR A CINEMA HOUSE , Applied Computer Science: Vol. 16 No. 2 (2020)
- Marcin KLIMEK, TECHNIQUES OF GENERATING SCHEDULES FOR THE PROBLEM OF FINANCIAL OPTIMIZATION OF MULTI-STAGE PROJECT , Applied Computer Science: Vol. 15 No. 1 (2019)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.