PRODUCTIVITY OF A LOW-BUDGET COMPUTER CLUSTER APPLIED TO OVERCOME THE N-BODY PROBLEM
Article Sidebar
Open full text
Issue Vol. 17 No. 4 (2021)
-
BLACK BOX EFFICIENCY MODELLING OF AN ELECTRIC DRIVE UNIT UTILIZING METHODS OF MACHINE LEARNING
Lukas BAUER, Leon STÜTZ, Markus KLEY5-19
-
IMPLEMENTATION OF A HARDWARE TROJAN CHIP DETECTOR MODEL USING ARDUINO MICROCONTROLLER
Kadeejah ABDULSALAM, John ADEBISI, Victor DUROJAIYE20-33
-
ARTIFICIAL NEURAL NETWORK BASED DEMAND FORECASTING INTEGRATED WITH FEDERAL FUNDS RATE
Anupa ARACHCHIGE, Ranil SUGATHADASA, Oshadhi HERATH, Amila THIBBOTUWAWA34-44
-
DETECTION OF FILLERS IN THE SPEECH BY PEOPLE WHO STUTTER
Waldemar SUSZYŃSKI, Małgorzata CHARYTANOWICZ, Wojciech ROSA, Leopold KOCZAN, Rafał STĘGIERSKI45-54
-
CAREER TRACK PREDICTION USING DEEP LEARNING MODEL BASED ON DISCRETE SERIES OF QUANTITATIVE CLASSIFICATION
Rowell HERNANDEZ, Robert ATIENZA55-74
-
KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS
Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA75-83
-
CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT
Jarosław ZUBRZYCKI, Antoni ŚWIĆ, Łukasz SOBASZEK, Juraj KOVAC, Ruzena KRALIKOVA, Robert JENCIK, Natalia SMIDOVA, Polyxeni ARAPI, Peter DULENCIN, Jozef HOMZA84-99
-
PRODUCTIVITY OF A LOW-BUDGET COMPUTER CLUSTER APPLIED TO OVERCOME THE N-BODY PROBLEM
Tomasz NOWICKI, Adam GREGOSIEWICZ, Zbigniew ŁAGODOWSKI100-109
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
Abstract
The classical n-body problem in physics addresses the prediction of individual motions of a group of celestial bodies under gravitational forces and has been studied since Isaac Newton formulated his laws. Nowadays the n-body problem has been recognized in many more fields of science and engineering. Each problem of mutual interaction between objects forming a dynamic group is called as the n-body problem. The cost of the direct algorithm for the problem is O(n2) and is not acceptable from the practical point of view. For this reason cheaper algorithms have been developed successfully reducing the cost to O(nln(n)) or even O(n). Because further improvement of the algorithms is unlikely to happen it is the hardware solutions which can still accelerate the calculations. The obvious answer here is a computer cluster that can preform the calculations in parallel. This paper focuses on the performance of a low-budget computer cluster created on ad hoc basis applied to n-body problem calculation. In order to maintain engineering valuable results a real technical issue was selected to study. It was Discrete Vortex Method that is used for simulating air flows. The presented research included writing original computer code, building a computer cluster, preforming simulations and comparing the results.
Keywords:
References
Aparinov, A. A., & Setukha, A. V. (2009). On the application of mosaic-skeleton approximations of matrices for the acceleration of computations in the vortex method for the three-dimensional Euler equations. Differential Equations, 45, 1358. http://doi.org/10.1134/S0012266109090110 DOI: https://doi.org/10.1134/S0012266109090110
Cottet, G. H., & Koumoutsakos, P. D. (2000). Vortex Methods Theory and Practice. Cambridge University Press. Dynnikova, G. Ya. (2009). Fast technique for solving the N-body problem in flow simulation by vortex methods. Computational Mathematics and Mathematical Physics, 49, 1389–1396. http://doi.org/10.1134/S0965542509080090 DOI: https://doi.org/10.1134/S0965542509080090
Groen, D., Zwart, S. P., Ishiyama, T., & Makino, J. (2011). High Performance Gravitational N-body Simulations on a Planet-wide Distributed Supercomputer. Computational Science & Discovery, 4(1), 015001. http://doi.org/10.1088/1749-4699/4/1/015001 DOI: https://doi.org/10.1088/1749-4699/4/1/015001
Hockney, R. W., & Eastwood, J. W. (1988). Computer Simulation Using Particles. Taylor & Francis Group. DOI: https://doi.org/10.1201/9781439822050
Huang, M. J., Su, H. X., & Chen, L. Ch. (2009). A fast resurrected core-spreading vortex method with no-slip boundary conditions. Journal of Computational Physics, 228(6), 1916–1931. https://doi.org/10.1016/j.jcp.2008.11.026 DOI: https://doi.org/10.1016/j.jcp.2008.11.026
Incardona, P., Leo, A., Zaluzhny, Y., Ramaswamy, R., & Sbalzarini, I. F. (2019). OpenFPM: A scalable open framework for particle and particle-mesh codes on parallel computers. Computer Physics Communications, 241, 155–177. https://doi.org/10.1016/j.cpc.2019.03.007 DOI: https://doi.org/10.1016/j.cpc.2019.03.007
Kuzmina, K., Marchevsky, I., & Moreva, V. (2015). Parallel Implementation of Vortex Element Method on CPUs and GPUs. Procedia Computer Science, 66, 73–82. https://doi.org/10.1016/j.procs.2015.11.010 DOI: https://doi.org/10.1016/j.procs.2015.11.010
Lewis, R. I. (1991). Vortex Element Methods for Fluid Dynamics of Engineering Systems. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511529542
Nowicki, T. (2007). Algorytm równoległy dla problemu n-ciał (Unpublished master thesis). Lublin University of Technology, Lublin. https://github.com/TomekNowicki/vorsym/blob/main/nowicki_n-body.pdf
Nowicki, T. (2012). Wpływ sposobu realizacji warunków brzegowych w metodzie wirów dyskretnych na odpowiedź aeroelastyczną pomostów. Politechnika Lubelska.
Nowicki, T. (2015). The Discrete Vortex Method for estimating how surface roughness affects aerodynamic drag acting on a long cylinder exposed to wind. Technical Transactions, Civil Engineering, 2-B(12), 127–144. https://doi.org/10.4467/2353737XCT.15.129.4166
Ricciardi, T. R., Wolf, W. R., & Bimbato, A. M. (2017). A fast algorithm for simulation of periodic flows using discrete vortex particles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 4555–4570. http://doi.org/10.1007/s40430-017-0902-x DOI: https://doi.org/10.1007/s40430-017-0902-x
Ricciardi, T., R., Bimbato, A. M., Wolf, W., R., Idelsohn, S. R., Sonzogni, V., Coutinho, A., Cruchaga, M., Lew, A., & Cerrolaza, M. (2015). Numerical simulation of vortex interactions using a fast multipole discrete particle method. Proceedings Of The 1st Pan-american Congress On Computational Mechanics And Xi Argentine Congress On Computational Mechanics (pp. 1065–1076). Barcelona: Int Center Numerical Methods Engineering.
Article Details
Abstract views: 508
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
