FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES

Sara SALEHI

Sara.salehi@rdu.edu.tr
Rauf Denktas Universit, Faculty of Architecture and Engineering, Department of Software Engineering, Northern Cyprus (Turkey)

Abstract

Today's market competition requires constant improvement of manufacturing companies. The primary key to sustainable improvement is evaluating the efficiency of manufacturing processes, which inevitably demands access to thorough and comprehensive information. However, due to the multiple numbers of effective factors that are varied in nature and value, it is impossible to identify certain factors that ensure the efficiency of a manufacturing procedure. As a solution, this paper proposes a novel approach that applies fuzzy TOPSIS. This approach provides the flexibility of evaluating multiple and varied factors of different weights in scrutinizing the efficiency of a manufacturer. The proposed approach has been applied to three different manufacturers (i.e., alternatives) in three steps. In the first step, with reference to the related literature and comments of manufacturing experts, the valuable factors (i.e., the criteria) have been selected to which experts specified linguistic terms. Linguistic terms were then converted to fuzzy numbers. Fuzzy TOPSIS was applied to analyze the efficiency performance of manufacturers. In the last step, to determine the impact of criteria weights on the decision-making process, sensitivity analysis was carried out. The findings confirm the implacability of the proposed approach to manufacturing performances in a consolidated manner. The approach can be employed by marketing managers, senior administrators, and other authorities in the manufacturing and business sectors.


Keywords:

Fuzzy theory, Fuzzy TOPSIS, Decision-making, Manufacturing Company

Abdullah, F. M., Al-Ahmari, A. M., & Anwar, S. (2023). An integrated fuzzy DEMATEL and fuzzy TOPSIS method for analyzing smart manufacturing technologies. Processes, 11(3), 906. https://doi.org/10.3390/pr11030906
DOI: https://doi.org/10.3390/pr11030906   Google Scholar

Ahmad, M. M., & Dhafr, N. (2002). Establishing and improving manufacturing performance measures. Robotics and Computer-Integrated Manufacturing, 18(3-4), 171–176. https://doi.org/10.1016/S0736- 5845(02)00007-8
DOI: https://doi.org/10.1016/S0736-5845(02)00007-8   Google Scholar

Alqahtani, A. Y., Gupta, S. M., & Nakashima, K. (2019). Warranty and maintenance analysis of sensor embedded products using internet of things in industry 4.0. International Journal of Production Economics, 208, 483–499. https://doi.org/10.1016/j.ijpe.2018.12.022
DOI: https://doi.org/10.1016/j.ijpe.2018.12.022   Google Scholar

Anderl, R., Haag, S., Schützer, K., & Zancul, E. (2018). Digital twin technology–an approach for industrie 4.0 vertical and horizontal lifecycle integration. it-Information Technology, 60(3), 125–132. https://doi.org/10.1515/itit-2017-0038
DOI: https://doi.org/10.1515/itit-2017-0038   Google Scholar

Attaran, M. (2017). The rise of 3-d printing: The advantages of additive manufacturing over traditional manufacturing. Business horizons, 60(5), 677–688. https://doi.org/10.1016/j.bushor.2017.05.011
DOI: https://doi.org/10.1016/j.bushor.2017.05.011   Google Scholar

Awodi, N. J., Liu, Y.-k., Ayo-Imoru, R. M., & Ayodeji, A. (2023). Fuzzy TOPSIS-based risk assessment model for effective nuclear decommissioning risk management. Progress in Nuclear Energy, 155, 104524. https://doi.org/10.1016/j.pnucene.2022.104524
DOI: https://doi.org/10.1016/j.pnucene.2022.104524   Google Scholar

Barlev, B., & Callen, J. L. (1986). Total factor productivity and cost variances: survey and analysis. Journal of Accounting Literature, 5, 35–56.
  Google Scholar

Bartosik-Purgat, M., & Ratajczak-Mrożek, M. (2018). Big data analysis as a source of companies’ competitive advantage: A review. Entrepreneurial Business and Economics Review, 6(4), 197–215.
DOI: https://doi.org/10.15678/EBER.2018.060411   Google Scholar

Bashir, Z., Rashid, T., Wątróbski, J., Sałabun, W., & Malik, A. (2018). Hesitant probabilistic multiplicative preference relations in group decision making. Applied Sciences, 8(3), 398. https://doi.org/10.3390/app8030398
DOI: https://doi.org/10.3390/app8030398   Google Scholar

Büchi, G., Cugno, M., & Castagnoli, R. (2020). Smart factory performance and industry 4.0. Technological Forecasting and Social Change, 150, 119790. https://doi.org/10.1016/j.techfore.2019.119790
DOI: https://doi.org/10.1016/j.techfore.2019.119790   Google Scholar

Chatterjee, P., & Stević, Ž. (2019). A two-phase fuzzy AHP-fuzzy TOPSIS model for supplier evaluation in manufacturing environment. Operational Research in Engineering Sciences: Theory and Applications, 2(1), 72–90. https://doi.org/10.31181/oresta1901060c
DOI: https://doi.org/10.31181/oresta1901060c   Google Scholar

Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1–9. https://doi.org/10.1016/S0165-0114(97)00377-1
DOI: https://doi.org/10.1016/S0165-0114(97)00377-1   Google Scholar

Choi, T.-M. (2018). A system of systems approach for global supply chain management in the big data era. IEEE Engineering Management Review, 46(1), 91– 97. https://doi.org/10.1109/EMR.2018.2810069
DOI: https://doi.org/10.1109/EMR.2018.2810069   Google Scholar

Chowdhury, P., & Paul, S. K. (2020). Applications of MCDM methods in research on corporate sustainability: A systematic literature review. Management of Environmental Quality: An International Journal, 31(2), 1477-7835. https://doi.org/10.1108/MEQ-12-2019-0284
DOI: https://doi.org/10.1108/MEQ-12-2019-0284   Google Scholar

National Research Council. (1979). Measurement and interpretation of productivity. National Academy of Sciences.
  Google Scholar

Coxon, M., Kelly, N., & Page, S. (2016). Individual differences in virtual reality: Are spatial presence and spatial ability linked? Virtual Reality, 20, 203– 212. https://doi.org/10.1007/s10055-016-0292-x
DOI: https://doi.org/10.1007/s10055-016-0292-x   Google Scholar

Dos Santos, B. M., Godoy, L. P., & Campos, L. M. (2019). Performance evaluation of green suppliers using entropy TOPSIS-F. Journal of cleaner production, 207, 498–509. https://doi.org/10.1016/j.jclepro.2018.09.235
DOI: https://doi.org/10.1016/j.jclepro.2018.09.235   Google Scholar

Druehl, C., Carrillo, J., & Hsuan, J. (2018). Technological innovations: Impacts on supply chains. In: Moreira, A., Ferreira, L., Zimmermann, R. (eds) Innovation and Supply Chain Management, (pp. 259-281). Springer. https://doi.org/10.1007/978-3-319-74304-2_12
DOI: https://doi.org/10.1007/978-3-319-74304-2_12   Google Scholar

Eccles, R. G. (1991). The performance measurement manifesto. Harvard business review, 69(1), 131–137.
  Google Scholar

Emovon, I., & Oghenenyerovwho, O. S. (2020). Application of MCDM method in material selection for optimal design: A review. Results in Materials, 7, 100115. https://doi.org/10.1016/j.rinma.2020.100115
DOI: https://doi.org/10.1016/j.rinma.2020.100115   Google Scholar

Guo, L., Yao, Z., Lin, M., & Xu, Z. (2023). Fuzzy TOPSIS-based privacy measurement in multiple online social networks. Complex & Intelligent Systems, 1–13. https://doi.org/10.1007/s40747-023-00991-y
DOI: https://doi.org/10.1007/s40747-023-00991-y   Google Scholar

Hajiaghaei-Keshteli, M., Cenk, Z., Erdebilli, B., Özdemir, Y. S., & Gholian-Jouybari, F. (2023). Pythagorean fuzzy TOPSIS method for green supplier selection in the food industry. Expert Systems with Applications, 224, 120036. https://doi.org/10.1016/j.eswa.2023.120036
DOI: https://doi.org/10.1016/j.eswa.2023.120036   Google Scholar

Hooshangi, N., Gharakhanlou, N. M., & Razin, S. R. G. (2023). Evaluation of potential sites in Iran to localize solar farms using a GIS-based Fermatean fuzzy TOPSIS. Journal of Cleaner Production, 384, 135481. https://doi.org/10.1016/j.jclepro.2022.135481
DOI: https://doi.org/10.1016/j.jclepro.2022.135481   Google Scholar

Hosseinzadeh Lotfi, F., Allahviranloo, T., Shafiee, M., & Saleh, H. (2023). Supplier performance evaluation models. In Supply chain performance evaluation: Application of data envelopment analysis, (vol. 122, pp. 117–148). Springer. https://doi.org/10.1007/978-3-031-28247-8_4
DOI: https://doi.org/10.1007/978-3-031-28247-8_4   Google Scholar

Hwang, C.-L., & Yoon, K. (1981). Basic concepts and foundations. In multiple attribute decision making. Lecture notes in economics and mathematical systems ( vol. 186, pp. 16–57). Springer. https://doi.org/10.1007/978-3-642-48318-9_2
DOI: https://doi.org/10.1007/978-3-642-48318-9_2   Google Scholar

Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making. In: Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, ( vol.186, pp. 58–191). Springer. https://doi.org/10.1007/978-3-642-48318-9_3
DOI: https://doi.org/10.1007/978-3-642-48318-9_3   Google Scholar

Kahraman, C., Onar, S. C., & Oztaysi, B. (2015). Fuzzy multicriteria decision-making: a literature review. International journal of computational intelligence systems, 8(4), 637-666. https://doi.org/10.1080/18756891.2015.1046325
DOI: https://doi.org/10.1080/18756891.2015.1046325   Google Scholar

Kaplan, R. S., & Norton, D. P. (2005). The balanced scorecard: measures that drive performance. Harvard business review, 70, 71-79.
  Google Scholar

Karczmarczyk, A., Jankowski, J., & Wątróbski, J. (2018). Multi-criteria decision support for planning and evaluation of performance of viral marketing campaigns in social networks. PloS one, 13(12), e0209372. https://doi.org/10.1371/journal.pone.0209372
DOI: https://doi.org/10.1371/journal.pone.0209372   Google Scholar

Khorram Niaki, M., & Nonino, F. (2017). Additive manufacturing management: a review and future research agenda. International Journal of Production Research, 55(5), 1419–1439. https://doi.org/10.1080/00207543.2016.1229064
DOI: https://doi.org/10.1080/00207543.2016.1229064   Google Scholar

Kuo, M.-S., Tzeng, G.-H., & Huang, W.-C. (2007). Group decision-making based on concepts of ideal and anti-ideal points in a fuzzy environment. Mathematical and Computer Modelling, 45(3-4), 324–339. https://doi.org/10.1016/j.mcm.2006.05.006
DOI: https://doi.org/10.1016/j.mcm.2006.05.006   Google Scholar

Leachman, C., Pegels, C. C., & Kyoon Shin, S. (2005). Manufacturing performance: evaluation and determinants. International Journal of Operations & Production Management, 25(9), 851–874. https://doi.org/10.1108/01443570510613938
DOI: https://doi.org/10.1108/01443570510613938   Google Scholar

Lee, J., Bagheri, B., & Jin, C. (2016). Introduction to cyber manufacturing. Manufacturing Letters, 8, 11–15. https://doi.org/10.1016/j.mfglet.2016.05.002
DOI: https://doi.org/10.1016/j.mfglet.2016.05.002   Google Scholar

Liu, Q., Kwong, C. F., Zhang, S., & Li, L. (2019). Fuzzy-TOPSIS based optimal handover decision-making algorithm for fifth-generation of mobile communications system. Journal of Communications., 14(10), 945–950. https://doi.org/10.12720/jcm.14.10.945-950
DOI: https://doi.org/10.12720/jcm.14.10.945-950   Google Scholar

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of industrial information integration, 6, 1–10. https://doi.org/10.1016/j.jii.2017.04.005
DOI: https://doi.org/10.1016/j.jii.2017.04.005   Google Scholar

Markopoulos, P. M., & Hosanagar, K. (2018). A model of product design and information disclosure investments. Management Science, 64(2), 495-981. https://doi.org/10.1287/mnsc.2016.2634
DOI: https://doi.org/10.1287/mnsc.2016.2634   Google Scholar

Nila, B., & Roy, J. (2023). A new hybrid MCDM framework for third-party logistic provider selection under sustainability perspectives. Expert Systems with Applications, 234, 121009. https://doi.org/10.1016/j.eswa.2023.121009
DOI: https://doi.org/10.1016/j.eswa.2023.121009   Google Scholar

Norman, R. G., & Bahiri, S. (1972). Productivity measurement and incentives. Transatlantic Arts.
  Google Scholar

Palczewski, K., & Sałabun, W. (2019). The fuzzy TOPSIS applications in the last decade. Procedia Computer Science, 159, 2294–2303. https://doi.org/10.1016/j.procs.2019.09.404
DOI: https://doi.org/10.1016/j.procs.2019.09.404   Google Scholar

Pourjavad, E., & Mayorga, R. V. (2019). A comparative study and measuring performance of manufacturing systems with MAMDANI fuzzy inference system. Journal of Intelligent Manufacturing, 30(3), 1085– 1097. https://doi.org/10.1007/s10845-017-1307-5
DOI: https://doi.org/10.1007/s10845-017-1307-5   Google Scholar

Regragui, H., Sefiani, N., Azzouzi, H., & Cheikhrouhou, N. (2023). A hybrid multicriteria decision-making approach for hospitals’ sustainability performance evaluation under fuzzy environment. International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-10-2022-0538
DOI: https://doi.org/10.1108/IJPPM-10-2022-0538   Google Scholar

Rezk, R., Singh Srai, J., & Williamson, P. J. (2016). The impact of product attributes and emerging technologies on firms’ international configuration. Journal of International Business Studies, 47, 610– 618. https://doi.org/10.1057/jibs.2016.9
DOI: https://doi.org/10.1057/jibs.2016.9   Google Scholar

Rouyendegh, B. D., Yildizbasi, A., & Üstünyer, P. (2020). Intuitionistic fuzzy TOPSIS method for green supplier selection problem. Soft Computing, 24, 2215– 2228. https://doi.org/10.1007/s00500-019- 04054-8
DOI: https://doi.org/10.1007/s00500-019-04054-8   Google Scholar

Rouyendegh, B. D., Yildizbasi, A., & Yilmaz, I. (2020). Evaluation of retail industry performance ability through integrated intuitionistic fuzzy TOPSIS and data envelopment analysis approach. Soft Computing, 24, 12255-12266. https://doi.org/10.1007/s00500-020-04669-2
DOI: https://doi.org/10.1007/s00500-020-04669-2   Google Scholar

Sakakibara, S., Flynn, B. B., Schroeder, R. G., & Morris, W. T. (1997). The impact of just-in-time manufacturing and its infrastructure on manufacturing performance. Management Science, 43(9), 1246–1257. https://doi.org/10.1287/mnsc.43.9.1246
DOI: https://doi.org/10.1287/mnsc.43.9.1246   Google Scholar

Salih, M. M., Zaidan, B.B., Zaidan, A. A., & Ahmed, M. A. (2019). Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017. Computers & Operations Research, 104, 207–227. https://doi.org/10.1016/j.cor.2018.12.019
DOI: https://doi.org/10.1016/j.cor.2018.12.019   Google Scholar

Solangi, Y. A., Tan, Q., Mirjat, N. H., & Ali, S. (2019). Evaluating the strategies for sustainable energy planning in Pakistan: An integrated SWOT-AHP and Fuzzy-TOPSIS approach. Journal of Cleaner Production, 236, 117655. https://doi.org/10.1016/j.jclepro.2019.117655
DOI: https://doi.org/10.1016/j.jclepro.2019.117655   Google Scholar

Sotoudeh-Anvari, A. (2022). The applications of MCDM methods in covid-19 pandemic: A state of the art review. Applied Soft Computing, 126, 109238. https://doi.org/10.1016/j.asoc.2022.109238
DOI: https://doi.org/10.1016/j.asoc.2022.109238   Google Scholar

Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry, 11(3), 350. https://doi.org/10.3390/sym11030350
DOI: https://doi.org/10.3390/sym11030350   Google Scholar

Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International journal of production research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806
DOI: https://doi.org/10.1080/00207543.2018.1444806   Google Scholar

Yang, T., & Hung, C.-C. (2007). Multiple-attribute decision making methods for plant layout design problem. Robotics and computer-integrated manufacturing, 23(1), 126–137. https://doi.org/10.1016/j.rcim.2005.12.002
DOI: https://doi.org/10.1016/j.rcim.2005.12.002   Google Scholar

Zadeh, L. A. (1996). Fuzzy sets. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, (pp. 394–432). World Scientific. https://doi.org/10.1142/2895
DOI: https://doi.org/10.1142/9789814261302_0021   Google Scholar

Download


Published
2023-09-30

Cited by

SALEHI, S. (2023). FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES. Applied Computer Science, 19(3), 28–46. https://doi.org/10.35784/acs-2023-23

Authors

Sara SALEHI 
Sara.salehi@rdu.edu.tr
Rauf Denktas Universit, Faculty of Architecture and Engineering, Department of Software Engineering, Northern Cyprus Turkey

Statistics

Abstract views: 220
PDF downloads: 120


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.