ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY
Article Sidebar
Open full text
Issue Vol. 17 No. 1 (2021)
-
ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY
Marcin Topczak, Małgorzata Śliwa5-16
-
PRACTICAL APPLICATION OF FUZZY LOGIC IN PRODUCTION CONTROL SYSTEMS OF ENGINEER TO ORDER SMES
Bartosz Cieśla, Janusz Mleczko17-25
-
ANALYSIS OF THE POSSIBILITY OF USING MARKERS EMITTING PULSATING LIGHT IN THE TASK OF LOCALIZATION
Piotr Miś, Przemysław Szulim26-39
-
RESOLUTION IN THE 3D MODELING OF OBJECTS FOR ADDITIVE MANUFACTURING AND REVERSE ENGINEERING – SHUTTER EFFECT
Elvis COUTIÑO-MORENO, Quirino ESTRADA, Daniel MALDONADO-ONOFRE, Alejandro RODRIGUEZ-MENDEZ, Julio GOMEZ-GIRON40-52
-
NOVEL SIMPLE DESIGN AND ANALYSIS OF WI-MAX TRANSCEIVER USING MATLAB-SIMULINK
Muaayed F. AL-RAWI, Muhanned F. AL-RAWI53-60
-
VIRTUAL REALITY IN PRODUCTION LAYOUT DESIGNING
Dariusz Plinta, Karolina Kłaptocz61-69
-
SEARCH ENGINE OPTIMIZATION: A REVIEW
Firas ALMUKHTAR, Nawzad MAHMOODD, Shahab KAREEM70-80
-
PLANT CLASSIFICATION BASED ON LEAF EDGES AND LEAF MORPHOLOGICAL VEINS USING WAVELET CONVOLUTIONAL NEURAL NETWORK
Wulan Dewi, Wiranto Herry Utomo81-89
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
Abstract
The changes caused by Industry 4.0 determine the decisions taken by manufacturing companies. Their activities are aimed at adapting processes and products to dynamic market requirements. Additive manufacturing technologies (AM) are the answer to the needs of enterprises. The implementation of AM technology brings many benefits, although for most 3D printing techniques it is also relatively expensive. Therefore, the implementation process should be preceded by an appropriate analysis, in order, finally, to assess the solution. This article presents the concept of using the Bayesian network when planning the implementation of AM technology. The use of the presented model allows the level of the success of the implementation of selected AM technology, to be estimated under given environmental conditions.
Keywords:
References
Aguilera, P. A., Fernandez, A., Fernandez, R., Rumi, R., & Salmeron, A. (2011). Bayesian networks in environmental modelling. Environmental Modelling & Software, 26(12), 1376–1388. https://doi.org/10.1016/j.envsoft.2011.06.004 DOI: https://doi.org/10.1016/j.envsoft.2011.06.004
Ahmed, N. (2019). Direct metal fabrication in rapid prototyping: A review. Journal of Manufacturing Processes, 42, 167-191. https://doi.org/10.1016/j.jmapro.2019.05.001 DOI: https://doi.org/10.1016/j.jmapro.2019.05.001
Biedermann, A., & Taroni, F. (2006). Bayesian networks and probabilistic reasoning about scientific evidence when there is a lack of data. Forensic Science International, 157(2–3), 163–167. https://doi.org/10.1016/j.forsciint.2005.09.008 DOI: https://doi.org/10.1016/j.forsciint.2005.09.008
Cassandras, C. G., & Lafoyonglirtune, S. (2008). Introduction to Discrete Event Systems. Springer-Verlag. DOI: https://doi.org/10.1007/978-0-387-68612-7
Constantinou, A. C., Fenton, N., & Neil, M. (2016). Integrating expert knowledge with data in Bayesian networks: Preserving data-driven expectations when the expert variables remain unobserved. Expert Systems With Applications, 56, 197–208. https://doi.org/10.1016/j.eswa.2016.02.050 DOI: https://doi.org/10.1016/j.eswa.2016.02.050
Daemi, T., Ebrahimi, A., & Fotuhi-Firuzabad, M. (2012). Constructing the Bayesian network for components reliability importance ranking in composite power systems. Int. J. Electr. Power Energy Syst., 43(1), 474–480. https://doi.org/10.1016/j.ijepes.2012.06.010 DOI: https://doi.org/10.1016/j.ijepes.2012.06.010
Dahire, S., Tahir, F., Jiao, Y., & Liu, Y. (2018). Bayesian Network inference for probabilistic strength estimation of aging pipeline systems. Int. J. Press. Vessels Pip., 162, 30–39. https://doi.org/10.1016/j.ijpvp.2018.01.004 DOI: https://doi.org/10.1016/j.ijpvp.2018.01.004
Fenton, N. E., & Neil, M. (2014). Decision Support Software for Probabilistic Risk Assessment Using Bayesian Networks. IEEE Software, 31(2), 21–26. http://dx.doi.org/10.1109/MS.2014.32 DOI: https://doi.org/10.1109/MS.2014.32
Fierro, L. H., Cano, R. E., & García, J. I. (2020). Modelling of a multi-agent supply chain management system using Colored Petri Nets. Procedia Manufacturing, 42, 288–295. https://doi.org/10.1016/j.promfg.2020.02.095 DOI: https://doi.org/10.1016/j.promfg.2020.02.095
Gao, Y., Xu, L., Zhao, Y., You, Z., & Guan, Q. (2020). 3D printing preview for stereo-lithography based on photopolymerization kinetic models. Bioactive Materials, 5(4), 798–807. https://doi.org/10.1016/j.bioactmat.2020.05.006 DOI: https://doi.org/10.1016/j.bioactmat.2020.05.006
Giebas, D., & Wojszczyk, R. (2018). Graphical representations of multithreaded applications. Applied Computer Science, 14(2), 20–37. https://doi.org/10.23743/acs-2018-10
Goole, J., & Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm., 499, 376–394. https://doi.org/10.1016/j.ijpharm.2015.12.071 DOI: https://doi.org/10.1016/j.ijpharm.2015.12.071
Gran, B. A., & Helminen, A. (2001). A Bayesian Belief Network for Reliability Assessment. In: U. Voges (Eds.), Computer Safety, Reliability and Security. SAFECOMP 2001. Lecture Notes in Computer Science (vol. 2187). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45416-0_4 DOI: https://doi.org/10.1007/3-540-45416-0_4
Kabir, S., & Papadopoulos, Y. (2019). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science, 115, 154–175. https://doi.org/10.1016/j.ssci.2019.02.009 DOI: https://doi.org/10.1016/j.ssci.2019.02.009
Karayuz, I., & Bidyuk, P. (2015). Forecasting GDP growth rate in Ukraine with alternative models. Applied Computer Science, 11(3), 88–97.
Lacheheub, M. N., Hameurlain, N., & Maamri, R. (2020). Resources consumption analysis of business process services in cloud computing using Petri Net. Journal of King Saud University – Computer and Information Sciences, 32(4), 408–418. https://doi.org/10.1016/j.jksuci.2019.08.005 DOI: https://doi.org/10.1016/j.jksuci.2019.08.005
Liu, H. C, You, J. X., Li, Z. W., & Tian, G. (2017). Fuzzy Petri nets for knowledge representation and reasoning: A literature review. Engineering Applications of Artificial Intelligence, 60, 45–56. https://doi.org/10.1016/j.engappai.2017.01.012 DOI: https://doi.org/10.1016/j.engappai.2017.01.012
Liu, H. C., Lin, Q. L., Mao, L. X., & Zhang, Z. Y. (2013). Dynamic adaptive fuzzy Petri nets for knowledge representation and reasoning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43, 1399–1410. https://doi.org/10.1109/TSMC.2013.2256125 DOI: https://doi.org/10.1109/TSMC.2013.2256125
Louazani, A., & Sekhri, L. (2020). Time Petri Nets based model for CL-MAC protocol with packet loss. Journal of King Saud University – Computer and Information Sciences, 32(4), 522–528. https://doi.org/10.1016/j.jksuci.2019.09.011 DOI: https://doi.org/10.1016/j.jksuci.2019.09.011
Mansour, M. M., Wahab, M. A. A., & Soliman, W. M. (2013). Petri nets for fault diagnosis of large power generation station. Ain Shams Engineering Journal, 4(4), 831–842. https://doi.org/10.1016/j.asej.2013.04.006 DOI: https://doi.org/10.1016/j.asej.2013.04.006
Nagarajan, B., Hu, Z., Song, X., Zhai, W., & Wei, J. (2019). Development of Micro Selective Laser Melting: The State
of the Art and Future Perspectives. Engineering, 5(4), 702–720. https://doi.org/10.1016/j.eng.2019.07.002 DOI: https://doi.org/10.1016/j.eng.2019.07.002
Nasiri, S., Khosravani, M. R., & Weinberg, K. (2017). Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Engineering Failure Analysis, 81, 270–293. https://doi.org/10.1016/j.engfailanal.2017.07.011 DOI: https://doi.org/10.1016/j.engfailanal.2017.07.011
Patalas-Maliszewska, J., & Krebs, I. (2015). Decision model for the use of the application for knowledge transfer support in manufacturing enterprises. In: W. Abramowicz (Eds.), Business Information Systems Workshops. BIS 2015. Lecture Notes in Business Information Processing (vol. 228). Springer, Cham. https://doi.org/10.1007/978-3-319-26762-3_5 DOI: https://doi.org/10.1007/978-3-319-26762-3_5
Patalas-Maliszewska, J. (2012). Assessing the Impact of ERP Implementation in the Small Enterprises. Foundations of Management, 4(2), 51062. https://doi.org/10.2478/fman-2013-0010 DOI: https://doi.org/10.2478/fman-2013-0010
Patalas-Maliszewska, J., Feldshtein, E., Devojno, O., Śliwa, M., Kardapolava, M., & Lutsko, N. (2020). Single Tracks as a Key Factor in Additive Manufacturing Technology-Analysis of Research Trends and Metal Deposition Behaviour. Materials, 13(5), 1115. https://doi.org/10.3390/ma13051115. DOI: https://doi.org/10.3390/ma13051115
Patalas-Maliszewska, J., Topczak, M., &, Kłos, S. (2020). The Level of the Additive Manufacturing Technology Use in Polish Metal and Automotive Manufacturing Enterprises. Applied Science, 10(3), 735. https://doi.org/10.3390/app10030735 DOI: https://doi.org/10.3390/app10030735
Penaranda, X., Moralejo, S., Lamikiz, A., & Figueras, J. (2017). An adaptive laser cladding methodology for blade tip repair. The International Journal of Advanced Manufacturing Technology, 92, 4337–4343. https://doi.org/10.1007/s00170-017-0500-1 DOI: https://doi.org/10.1007/s00170-017-0500-1
Ramírez-Noriega, A., Juárez-Ramírez, R., & Martínez-Ramírez, Y. (2017). Evaluation module based on Bayesian networks to Intelligent Tutoring Systems. Int. J. Inf. Manag., 37(1), 1488–1498. https://doi.org/10.1016/j.ijinfomgt.2016.05.007 DOI: https://doi.org/10.1016/j.ijinfomgt.2016.05.007
Rebello, S., Yu, H., & Ma, L. (2019). An integrated approach for real-time hazard mitigation in complex industrial processes. Reliability Engineering & System Safety, 188, 297–309. https://doi.org/10.1016/j.ress.2019.03.037 DOI: https://doi.org/10.1016/j.ress.2019.03.037
Rosário, C. R., Kipper, L. M., Frozza, R., & Mariani, B. B. (2015). Modeling of tacit knowledge in industry: Simulations on the variables of industrial processes. Expert Systems with Applications, 42(3), 1613–1625. https://doi.org/10.1016/j.eswa.2014.09.023 DOI: https://doi.org/10.1016/j.eswa.2014.09.023
Shin, J., Kim, S., & Lee, J. M. (2015). Production and inventory control of auto parts based on predicted probabilistic distribution of inventory. Digital Communications and Networks, 1(4), 292–301. https://doi.org/10.1016/j.dcan.2015.10.002 DOI: https://doi.org/10.1016/j.dcan.2015.10.002
Wieleba, R. (2011). Knowledge Engineering in the expert systems. Sci. Notebooks Warsaw Univ. Inf. Technol., 5, 195–216.
Yanrong, H., & Yang, S. X. (2004). A knowledge based genetic algorithm for path planning of a mobile robot. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. (vol. 5, pp. 4350–4355). https://doi.org/10.1109/ROBOT.2004.1302402 DOI: https://doi.org/10.1109/ROBOT.2004.1302402
Yongli, Z., Limin, H., Liguo, Z., & Yan, W. (2008). Bayesian network based time-sequence simulation for power system reliability assessment. Seventh Mexican International Conference on Artificial Intelligence (pp. 271–277). IEEE. DOI: https://doi.org/10.1109/MICAI.2008.35
Article Details
Abstract views: 632
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
