ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY

Marcin Topczak

m.topczak@wp.pl
Institute of Mechanical Engineering, University of Zielona Góra (Poland)
https://orcid.org/0000-0003-2277-144X

Małgorzata Śliwa


(Poland)
https://orcid.org/0000-0001-6453-5758

Abstract

The changes caused by Industry 4.0 determine the decisions taken by manufacturing companies. Their activities are aimed at adapting processes and products to dynamic market requirements. Additive manufacturing technologies (AM) are the answer to the needs of enterprises. The implementation of AM technology brings many benefits, although for most 3D printing techniques it is also relatively expensive. Therefore, the implementation process should be preceded by an appropriate analysis, in order, finally, to assess the solution. This article presents the concept of using the Bayesian network when planning the implementation of AM technology. The use of the presented model allows the level of the success of the implementation of selected AM technology, to be estimated under given environmental conditions.


Keywords:

additive manufacturing, Bayesian network, Petri nets, process modelling

Aguilera, P. A., Fernandez, A., Fernandez, R., Rumi, R., & Salmeron, A. (2011). Bayesian networks in environmental modelling. Environmental Modelling & Software, 26(12), 1376–1388. https://doi.org/10.1016/j.envsoft.2011.06.004
DOI: https://doi.org/10.1016/j.envsoft.2011.06.004   Google Scholar

Ahmed, N. (2019). Direct metal fabrication in rapid prototyping: A review. Journal of Manufacturing Processes, 42, 167-191. https://doi.org/10.1016/j.jmapro.2019.05.001
DOI: https://doi.org/10.1016/j.jmapro.2019.05.001   Google Scholar

Biedermann, A., & Taroni, F. (2006). Bayesian networks and probabilistic reasoning about scientific evidence when there is a lack of data. Forensic Science International, 157(2–3), 163–167. https://doi.org/10.1016/j.forsciint.2005.09.008
DOI: https://doi.org/10.1016/j.forsciint.2005.09.008   Google Scholar

Cassandras, C. G., & Lafoyonglirtune, S. (2008). Introduction to Discrete Event Systems. Springer-Verlag.
DOI: https://doi.org/10.1007/978-0-387-68612-7   Google Scholar

Constantinou, A. C., Fenton, N., & Neil, M. (2016). Integrating expert knowledge with data in Bayesian networks: Preserving data-driven expectations when the expert variables remain unobserved. Expert Systems With Applications, 56, 197–208. https://doi.org/10.1016/j.eswa.2016.02.050
DOI: https://doi.org/10.1016/j.eswa.2016.02.050   Google Scholar

Daemi, T., Ebrahimi, A., & Fotuhi-Firuzabad, M. (2012). Constructing the Bayesian network for components reliability importance ranking in composite power systems. Int. J. Electr. Power Energy Syst., 43(1), 474–480. https://doi.org/10.1016/j.ijepes.2012.06.010
DOI: https://doi.org/10.1016/j.ijepes.2012.06.010   Google Scholar

Dahire, S., Tahir, F., Jiao, Y., & Liu, Y. (2018). Bayesian Network inference for probabilistic strength estimation of aging pipeline systems. Int. J. Press. Vessels Pip., 162, 30–39. https://doi.org/10.1016/j.ijpvp.2018.01.004
DOI: https://doi.org/10.1016/j.ijpvp.2018.01.004   Google Scholar

Fenton, N. E., & Neil, M. (2014). Decision Support Software for Probabilistic Risk Assessment Using Bayesian Networks. IEEE Software, 31(2), 21–26. http://dx.doi.org/10.1109/MS.2014.32
DOI: https://doi.org/10.1109/MS.2014.32   Google Scholar

Fierro, L. H., Cano, R. E., & García, J. I. (2020). Modelling of a multi-agent supply chain management system using Colored Petri Nets. Procedia Manufacturing, 42, 288–295. https://doi.org/10.1016/j.promfg.2020.02.095
DOI: https://doi.org/10.1016/j.promfg.2020.02.095   Google Scholar

Gao, Y., Xu, L., Zhao, Y., You, Z., & Guan, Q. (2020). 3D printing preview for stereo-lithography based on photopolymerization kinetic models. Bioactive Materials, 5(4), 798–807. https://doi.org/10.1016/j.bioactmat.2020.05.006
DOI: https://doi.org/10.1016/j.bioactmat.2020.05.006   Google Scholar

Giebas, D., & Wojszczyk, R. (2018). Graphical representations of multithreaded applications. Applied Computer Science, 14(2), 20–37. https://doi.org/10.23743/acs-2018-10
  Google Scholar

Goole, J., & Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm., 499, 376–394. https://doi.org/10.1016/j.ijpharm.2015.12.071
DOI: https://doi.org/10.1016/j.ijpharm.2015.12.071   Google Scholar

Gran, B. A., & Helminen, A. (2001). A Bayesian Belief Network for Reliability Assessment. In: U. Voges (Eds.), Computer Safety, Reliability and Security. SAFECOMP 2001. Lecture Notes in Computer Science (vol. 2187). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45416-0_4
DOI: https://doi.org/10.1007/3-540-45416-0_4   Google Scholar

Kabir, S., & Papadopoulos, Y. (2019). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science, 115, 154–175. https://doi.org/10.1016/j.ssci.2019.02.009
DOI: https://doi.org/10.1016/j.ssci.2019.02.009   Google Scholar

Karayuz, I., & Bidyuk, P. (2015). Forecasting GDP growth rate in Ukraine with alternative models. Applied Computer Science, 11(3), 88–97.
  Google Scholar

Lacheheub, M. N., Hameurlain, N., & Maamri, R. (2020). Resources consumption analysis of business process services in cloud computing using Petri Net. Journal of King Saud University – Computer and Information Sciences, 32(4), 408–418. https://doi.org/10.1016/j.jksuci.2019.08.005
DOI: https://doi.org/10.1016/j.jksuci.2019.08.005   Google Scholar

Liu, H. C, You, J. X., Li, Z. W., & Tian, G. (2017). Fuzzy Petri nets for knowledge representation and reasoning: A literature review. Engineering Applications of Artificial Intelligence, 60, 45–56. https://doi.org/10.1016/j.engappai.2017.01.012
DOI: https://doi.org/10.1016/j.engappai.2017.01.012   Google Scholar

Liu, H. C., Lin, Q. L., Mao, L. X., & Zhang, Z. Y. (2013). Dynamic adaptive fuzzy Petri nets for knowledge representation and reasoning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43, 1399–1410. https://doi.org/10.1109/TSMC.2013.2256125
DOI: https://doi.org/10.1109/TSMC.2013.2256125   Google Scholar

Louazani, A., & Sekhri, L. (2020). Time Petri Nets based model for CL-MAC protocol with packet loss. Journal of King Saud University – Computer and Information Sciences, 32(4), 522–528. https://doi.org/10.1016/j.jksuci.2019.09.011
DOI: https://doi.org/10.1016/j.jksuci.2019.09.011   Google Scholar

Mansour, M. M., Wahab, M. A. A., & Soliman, W. M. (2013). Petri nets for fault diagnosis of large power generation station. Ain Shams Engineering Journal, 4(4), 831–842. https://doi.org/10.1016/j.asej.2013.04.006
DOI: https://doi.org/10.1016/j.asej.2013.04.006   Google Scholar

Nagarajan, B., Hu, Z., Song, X., Zhai, W., & Wei, J. (2019). Development of Micro Selective Laser Melting: The State
  Google Scholar

of the Art and Future Perspectives. Engineering, 5(4), 702–720. https://doi.org/10.1016/j.eng.2019.07.002
DOI: https://doi.org/10.1016/j.eng.2019.07.002   Google Scholar

Nasiri, S., Khosravani, M. R., & Weinberg, K. (2017). Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Engineering Failure Analysis, 81, 270–293. https://doi.org/10.1016/j.engfailanal.2017.07.011
DOI: https://doi.org/10.1016/j.engfailanal.2017.07.011   Google Scholar

Patalas-Maliszewska, J., & Krebs, I. (2015). Decision model for the use of the application for knowledge transfer support in manufacturing enterprises. In: W. Abramowicz (Eds.), Business Information Systems Workshops. BIS 2015. Lecture Notes in Business Information Processing (vol. 228). Springer, Cham. https://doi.org/10.1007/978-3-319-26762-3_5
DOI: https://doi.org/10.1007/978-3-319-26762-3_5   Google Scholar

Patalas-Maliszewska, J. (2012). Assessing the Impact of ERP Implementation in the Small Enterprises. Foundations of Management, 4(2), 51062. https://doi.org/10.2478/fman-2013-0010
DOI: https://doi.org/10.2478/fman-2013-0010   Google Scholar

Patalas-Maliszewska, J., Feldshtein, E., Devojno, O., Śliwa, M., Kardapolava, M., & Lutsko, N. (2020). Single Tracks as a Key Factor in Additive Manufacturing Technology-Analysis of Research Trends and Metal Deposition Behaviour. Materials, 13(5), 1115. https://doi.org/10.3390/ma13051115.
DOI: https://doi.org/10.3390/ma13051115   Google Scholar

Patalas-Maliszewska, J., Topczak, M., &, Kłos, S. (2020). The Level of the Additive Manufacturing Technology Use in Polish Metal and Automotive Manufacturing Enterprises. Applied Science, 10(3), 735. https://doi.org/10.3390/app10030735
DOI: https://doi.org/10.3390/app10030735   Google Scholar

Penaranda, X., Moralejo, S., Lamikiz, A., & Figueras, J. (2017). An adaptive laser cladding methodology for blade tip repair. The International Journal of Advanced Manufacturing Technology, 92, 4337–4343. https://doi.org/10.1007/s00170-017-0500-1
DOI: https://doi.org/10.1007/s00170-017-0500-1   Google Scholar

Ramírez-Noriega, A., Juárez-Ramírez, R., & Martínez-Ramírez, Y. (2017). Evaluation module based on Bayesian networks to Intelligent Tutoring Systems. Int. J. Inf. Manag., 37(1), 1488–1498. https://doi.org/10.1016/j.ijinfomgt.2016.05.007
DOI: https://doi.org/10.1016/j.ijinfomgt.2016.05.007   Google Scholar

Rebello, S., Yu, H., & Ma, L. (2019). An integrated approach for real-time hazard mitigation in complex industrial processes. Reliability Engineering & System Safety, 188, 297–309. https://doi.org/10.1016/j.ress.2019.03.037
DOI: https://doi.org/10.1016/j.ress.2019.03.037   Google Scholar

Rosário, C. R., Kipper, L. M., Frozza, R., & Mariani, B. B. (2015). Modeling of tacit knowledge in industry: Simulations on the variables of industrial processes. Expert Systems with Applications, 42(3), 1613–1625. https://doi.org/10.1016/j.eswa.2014.09.023
DOI: https://doi.org/10.1016/j.eswa.2014.09.023   Google Scholar

Shin, J., Kim, S., & Lee, J. M. (2015). Production and inventory control of auto parts based on predicted probabilistic distribution of inventory. Digital Communications and Networks, 1(4), 292–301. https://doi.org/10.1016/j.dcan.2015.10.002
DOI: https://doi.org/10.1016/j.dcan.2015.10.002   Google Scholar

Wieleba, R. (2011). Knowledge Engineering in the expert systems. Sci. Notebooks Warsaw Univ. Inf. Technol., 5, 195–216.
  Google Scholar

Yanrong, H., & Yang, S. X. (2004). A knowledge based genetic algorithm for path planning of a mobile robot. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. (vol. 5, pp. 4350–4355). https://doi.org/10.1109/ROBOT.2004.1302402
DOI: https://doi.org/10.1109/ROBOT.2004.1302402   Google Scholar

Yongli, Z., Limin, H., Liguo, Z., & Yan, W. (2008). Bayesian network based time-sequence simulation for power system reliability assessment. Seventh Mexican International Conference on Artificial Intelligence (pp. 271–277). IEEE.
DOI: https://doi.org/10.1109/MICAI.2008.35   Google Scholar

Download


Published
2021-03-30

Cited by

Topczak, M., & Śliwa, M. . (2021). ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY. Applied Computer Science, 17(1), 5–16. https://doi.org/10.23743/acs-2021-01

Authors

Marcin Topczak 
m.topczak@wp.pl
Institute of Mechanical Engineering, University of Zielona Góra Poland
https://orcid.org/0000-0003-2277-144X

Authors

Małgorzata Śliwa 

Poland
https://orcid.org/0000-0001-6453-5758

Statistics

Abstract views: 279
PDF downloads: 15


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.