FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
wawan.gunawan@radenintan.ac.id
Abstract
One of the most important goals in image segmentation is the process of separating the object parts from the image background. Image segmentation is also a fundamental stage in the development of other image applications such as object recognition, target tracking, computer vision, and biomedical image processing. Interactive image segmentation methods with additional user interaction are still popular in research. Interactive image segmentation aims to provide additional information through simple interactions, especially in images with complex objects. Interactive image segmentation with region merging processes has drawbacks, one of which is suboptimal region splitting due to soft color shades, blurred contours, and uneven lighting, referred to in this study as ambiguous regions. However, in the fuzzy region initialization stage after obtaining values from the marker process, there is a possibility of missing or suboptimal determination of fuzzy regions. This is because it only takes the highest gray level value for the background marker and the lowest gray level value for the object marker. In this study, fuzzy region merging using hierarchical clustering is proposed to find optimal initialization for fuzzy regions in image segmentation. Based on the experimental results, the proposed method can achieve optimal segmentation with an average misclassification error value of 2.62% for Natural Images and 9.33% for Dental Images.
Keywords:
References
Alemi Koohbanani, N., Jahanifar, M., Zamani Tajadin, N., & Rajpoot, N. (2020). NuClick: A Deep Learning framework for interactive segmentation of microscopic images. Medical Image Analysis, 65, 101771. https://doi.org/10.1016/j.media.2020.101771 DOI: https://doi.org/10.1016/j.media.2020.101771
Alpert, S., Galun, M., Basri, R., & Brandt, A. (2007). Image segmentation by probabilistic bottom-up aggregation and cue integration. 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE. https://doi.org/10.1109/CVPR.2007.383017 DOI: https://doi.org/10.1109/CVPR.2007.383017
Arifin, A. Z., & Asano, A. (2005). Image thresholding by measuring the fuzzy sets. Information Dan Technology Seminar (pp. 189-194).
Boykov, Y. Y., & Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. Eighth IEEE International Conference on Computer Vision. ICCV 2001 (pp. 105-112). IEEE. https://doi.org/10.1109/ICCV.2001.937505 DOI: https://doi.org/10.1109/ICCV.2001.937505
Da Fonseca, G. B., Perret, B., Negrel, R., Cousty, J., & Guimarães, S. J. F. (2021). Fuzzy-Marker-Based segmentation using hierarchies. In J. Lindblad, F. Malmberg, & N. Sladoje (Eds.), Discrete Geometry and Mathematical Morphology (Vol. 12708, pp. 391–403). Springer International Publishing. https://doi.org/10.1007/978-3-030-76657-3_28 DOI: https://doi.org/10.1007/978-3-030-76657-3_28
Ding, Z., Wang, T., Sun, Q., & Chen, F. (2023). Rethinking click embedding for deep interactive image segmentation. IEEE Transactions on Industrial Informatics, 19(1), 261-273. https://doi.org/10.1109/TII.2022.3157319 DOI: https://doi.org/10.1109/TII.2022.3157319
Gunawan, W., Arifin, A. Z., Indraswari, R., & Navastara, D. A. (2017). Fuzzy region merging using fuzzy similarity measurement on image segmentation. International Journal of Electrical and Computer Engineering, 7(6), 3402. https://doi.org/10.11591/ijece.v7i6.pp3402-3410 DOI: https://doi.org/10.11591/ijece.v7i6.pp3402-3410
Jung, C., Liu, J., Sun, T., Jiao, L., & Shen, Y. (2014). Automatic image segmentation using constraint learning and propagation. Digital Signal Processing, 24, 106-116. https://doi.org/10.1016/j.dsp.2013.09.006 DOI: https://doi.org/10.1016/j.dsp.2013.09.006
Makhlouf, Z., Meraoumia, A., Lakhdar, L., & Haouam, M. Y. (2024). Enhancing medical data security in e-health systems using biometric-based watermarking. Applied Computer Science, 20(1), 28-55. https://doi.org/10.35784/acs-2024-03 DOI: https://doi.org/10.35784/acs-2024-03
Mikhailov, I., Chauveau, B., Bourdel, N., & Bartoli, A. (2024). A deep learning-based interactive medical image segmentation framework with sequential memory. Computer Methods and Programs in Biomedicine, 245, 108038. https://doi.org/10.1016/j.cmpb.2024.108038 DOI: https://doi.org/10.1016/j.cmpb.2024.108038
Militello, C., Rundo, L., Dimarco, M., Orlando, A., Conti, V., Woitek, R., D’Angelo, I., Bartolotta, T. V., & Russo, G. (2022). Semi-automated and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering. Biomedical Signal Processing and Control, 71, 103113. https://doi.org/10.1016/j.bspc.2021.103113 DOI: https://doi.org/10.1016/j.bspc.2021.103113
Nguyen, T. N. A., Cai, J., Zheng, J., & Li, J. (2013). Interactive object segmentation from multi-view images. Journal of Visual Communication and Image Representation, 24(4), 477-485. https://doi.org/10.1016/j.jvcir.2013.02.012 DOI: https://doi.org/10.1016/j.jvcir.2013.02.012
Ning, J., Zhang, L., Zhang, D., & Wu, C. (2010). Interactive image segmentation by maximal similarity based region merging. Pattern Recognition, 43(2), 445-456. https://doi.org/10.1016/j.patcog.2009.03.004 DOI: https://doi.org/10.1016/j.patcog.2009.03.004
Ôn Vũ Ngọc, M., Carlinet, E., Fabrizio, J., & Géraud, T. (2023). The Dahu graph-cut for interactive segmentation on 2D/3D images. Pattern Recognition, 136, 109207. https://doi.org/10.1016/j.patcog.2022.109207 DOI: https://doi.org/10.1016/j.patcog.2022.109207
Sankoh, A. S., Arifin, A. Z., & Wijaya, A. Y. (2016). Extracted pixels similarity features (EPSF) using interactive image segmentation techniques. International Journal of Computer Applications, 136(2), 5-12. https://doi.org/10.5120/ijca2016908236 DOI: https://doi.org/10.5120/ijca2016908236
Article Details
Abstract views: 257
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
