FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION

Wawan GUNAWAN

wawan.gunawan@radenintan.ac.id
Universitas Islam Negeri Raden Intan Lampung: Bandar Lampung (Indonesia)
https://orcid.org/0000-0002-9034-459X

Abstract

One of the most important goals in image segmentation is the process of separating the object parts from the image background. Image segmentation is also a fundamental stage in the development of other image applications such as object recognition, target tracking, computer vision, and biomedical image processing. Interactive image segmentation methods with additional user interaction are still popular in research. Interactive image segmentation aims to provide additional information through simple interactions, especially in images with complex objects. Interactive image segmentation with region merging processes has drawbacks, one of which is suboptimal region splitting due to soft color shades, blurred contours, and uneven lighting, referred to in this study as ambiguous regions. However, in the fuzzy region initialization stage after obtaining values from the marker process, there is a possibility of missing or suboptimal determination of fuzzy regions. This is because it only takes the highest gray level value for the background marker and the lowest gray level value for the object marker. In this study, fuzzy region merging using hierarchical clustering is proposed to find optimal initialization for fuzzy regions in image segmentation. Based on the experimental results, the proposed method can achieve optimal segmentation with an average misclassification error value of 2.62% for Natural Images and 9.33% for Dental Images.


Keywords:

Image segmentation, Interactive image segmentation, Initialization fuzzy regions

Alemi Koohbanani, N., Jahanifar, M., Zamani Tajadin, N., & Rajpoot, N. (2020). NuClick: A Deep Learning framework for interactive segmentation of microscopic images. Medical Image Analysis, 65, 101771. https://doi.org/10.1016/j.media.2020.101771
  Google Scholar

Alpert, S., Galun, M., Basri, R., & Brandt, A. (2007). Image segmentation by probabilistic bottom-up aggregation and cue integration. 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE. https://doi.org/10.1109/CVPR.2007.383017
  Google Scholar

Arifin, A. Z., & Asano, A. (2005). Image thresholding by measuring the fuzzy sets. Information Dan Technology Seminar (pp. 189-194).
  Google Scholar

Boykov, Y. Y., & Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. Eighth IEEE International Conference on Computer Vision. ICCV 2001 (pp. 105-112). IEEE. https://doi.org/10.1109/ICCV.2001.937505
  Google Scholar

Da Fonseca, G. B., Perret, B., Negrel, R., Cousty, J., & Guimarães, S. J. F. (2021). Fuzzy-Marker-Based segmentation using hierarchies. In J. Lindblad, F. Malmberg, & N. Sladoje (Eds.), Discrete Geometry and Mathematical Morphology (Vol. 12708, pp. 391–403). Springer International Publishing. https://doi.org/10.1007/978-3-030-76657-3_28
  Google Scholar

Ding, Z., Wang, T., Sun, Q., & Chen, F. (2023). Rethinking click embedding for deep interactive image segmentation. IEEE Transactions on Industrial Informatics, 19(1), 261-273. https://doi.org/10.1109/TII.2022.3157319
  Google Scholar

Gunawan, W., Arifin, A. Z., Indraswari, R., & Navastara, D. A. (2017). Fuzzy region merging using fuzzy similarity measurement on image segmentation. International Journal of Electrical and Computer Engineering, 7(6), 3402. https://doi.org/10.11591/ijece.v7i6.pp3402-3410
  Google Scholar

Jung, C., Liu, J., Sun, T., Jiao, L., & Shen, Y. (2014). Automatic image segmentation using constraint learning and propagation. Digital Signal Processing, 24, 106-116. https://doi.org/10.1016/j.dsp.2013.09.006
  Google Scholar

Makhlouf, Z., Meraoumia, A., Lakhdar, L., & Haouam, M. Y. (2024). Enhancing medical data security in e-health systems using biometric-based watermarking. Applied Computer Science, 20(1), 28-55. https://doi.org/10.35784/acs-2024-03
  Google Scholar

Mikhailov, I., Chauveau, B., Bourdel, N., & Bartoli, A. (2024). A deep learning-based interactive medical image segmentation framework with sequential memory. Computer Methods and Programs in Biomedicine, 245, 108038. https://doi.org/10.1016/j.cmpb.2024.108038
  Google Scholar

Militello, C., Rundo, L., Dimarco, M., Orlando, A., Conti, V., Woitek, R., D’Angelo, I., Bartolotta, T. V., & Russo, G. (2022). Semi-automated and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering. Biomedical Signal Processing and Control, 71, 103113. https://doi.org/10.1016/j.bspc.2021.103113
  Google Scholar

Nguyen, T. N. A., Cai, J., Zheng, J., & Li, J. (2013). Interactive object segmentation from multi-view images. Journal of Visual Communication and Image Representation, 24(4), 477-485. https://doi.org/10.1016/j.jvcir.2013.02.012
  Google Scholar

Ning, J., Zhang, L., Zhang, D., & Wu, C. (2010). Interactive image segmentation by maximal similarity based region merging. Pattern Recognition, 43(2), 445-456. https://doi.org/10.1016/j.patcog.2009.03.004
  Google Scholar

Ôn Vũ Ngọc, M., Carlinet, E., Fabrizio, J., & Géraud, T. (2023). The Dahu graph-cut for interactive segmentation on 2D/3D images. Pattern Recognition, 136, 109207. https://doi.org/10.1016/j.patcog.2022.109207
  Google Scholar

Sankoh, A. S., Arifin, A. Z., & Wijaya, A. Y. (2016). Extracted pixels similarity features (EPSF) using interactive image segmentation techniques. International Journal of Computer Applications, 136(2), 5-12. https://doi.org/10.5120/ijca2016908236
  Google Scholar

Download


Published
2024-12-31

Cited by

GUNAWAN, W. (2024). FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION. Applied Computer Science, 20(4), 211–220. https://doi.org/10.35784/acs-2024-48

Authors

Wawan GUNAWAN 
wawan.gunawan@radenintan.ac.id
Universitas Islam Negeri Raden Intan Lampung: Bandar Lampung Indonesia
https://orcid.org/0000-0002-9034-459X

Statistics

Abstract views: 52
PDF downloads: 12


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.