A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION

Victor CHUNG

vchung@unprg.edu.pe
Universidad Nacional Pedro Ruiz Gallo, FACFyM (Peru)
https://orcid.org/0000-0002-8358-3939

Jenny ESPINOZA


Universidad Tecnológica del Perú (Peru)

Abstract

The objective of this research was to compare the effectiveness of the GARCH method with machine learning techniques in predicting asset volatility in the main Latin American markets. The daily squared return was utilized as a volatility indicator, and the accuracy of the predictions was assessed using root mean square error (RMSE) and mean absolute error (MAE) metrics. The findings consistently demonstrated that the linear SVR-GARCH models outperformed other approaches, exhibiting the lowest MAE and MSE values across various assets in the test sample. Specifically, the SVRGARCH RBF model achieved the most accurate results for the IPC asset. It was observed that GARCH models tended to produce higher volatility forecasts during periods of heightened volatility due to their responsiveness to significant past changes. Consequently, this led to larger squared prediction errors for GARCH models compared to SVR models. This suggests that incorporating machine learning techniques can provide improved volatility forecasting capabilities compared to the traditional GARCH models.


Keywords:

return, volatility, GARCH, Machine Learning

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
DOI: https://doi.org/10.1016/0304-4076(86)90063-1   Google Scholar

Bezerra, P., Albuquerque, P. (2017). Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels. Computational Management Science, 14, 179–196. https://doi.org/10.1007/s10287-016- 0267-0
DOI: https://doi.org/10.1007/s10287-016-0267-0   Google Scholar

Chen, S., Jeong, K., & Härdle, W. K. (2008). Support vector regression based GARCH model with application to forecasting volatility of financial returns. SFB 649 Discussion SFB 649 Discussion Paper 2008-014. https://dx.doi.org/10.2139/ssrn.2894286
DOI: https://doi.org/10.2139/ssrn.2894286   Google Scholar

Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal, 2, 100015. https://doi.org/10.1016/j.dajour.2021.100015
DOI: https://doi.org/10.1016/j.dajour.2021.100015   Google Scholar

Christensen, K., Siggaard, M., & Veliyev, B. (2022). A Machine Learning Approach to Volatility Forecasting. Journal of Financial Econometrics, nbac02. https://doi.org/10.1093/jjfinec/nbac020
DOI: https://doi.org/10.1093/jjfinec/nbac020   Google Scholar

Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H., Reis Alves, S. F. (2016). Artificial Neural Networks: A Practical Course (pp. 3-19). Springer. https://doi.org/10.1007/978-3-319-43162- 8_1
DOI: https://doi.org/10.1007/978-3-319-43162-8_1   Google Scholar

D’Ecclesia, R. L., & Clementi, D. (2021). Volatility in the stock market: ANN versus parametric models. Annals of Operations Research, 299(1), 1101-1127. https://doi.org/10.1007/s10479-019-03374-0
DOI: https://doi.org/10.1007/s10479-019-03374-0   Google Scholar

Feng, H., Kong, F., & Xiao, Y. (2011). Vessel Traffic Flow Forecasting Model Study based on Support Vector Machine. In Shen, G., Huang, X. (eds), Advanced Research on Electronic Commerce, Web Application, and Communication. ECWAC 2011. Communications in Computer and Information Science, (vol. 143, pp. 446 – 451). Springer. https://doi.org/10.1007/978-3-642- 20367-1_72
DOI: https://doi.org/10.1007/978-3-642-20367-1_72   Google Scholar

Filipovic, D., & Khalilzadeh, A. (2021). Machine Learning for Predicting Stock Return Volatility. Swiss Finance Institute Research Paper. 21-95. http://dx.doi.org/10.2139/ssrn.3995529
DOI: https://doi.org/10.2139/ssrn.3995529   Google Scholar

Fraz, T. R., Fatima, S., & Uddin, M. (2022). Modeling and Forecasting Stock Market Volatility of CPEC Founding Countries: Using Nonlinear Time Series and Machine Learning Models. JISR Management and Social Sciences & Economics, 20(1), 1–20. https://doi.org/10.31384/jisrmsse/2022.20.1.1
DOI: https://doi.org/10.31384/jisrmsse/2022.20.1.1   Google Scholar

Gholami, R., Fakhari, N. (2017). Chapter 27 - Support Vector Machine: Principles, Parameters, and Applications. In Samui, P., Sekhar, S., and Balas, V. E., (eds), Handbook of Neural Computation, ( vol. 2017, pp. 515-535) . Academic Press. https://doi.org/10.1016/B978-0-12-811318-9.00027-2
DOI: https://doi.org/10.1016/B978-0-12-811318-9.00027-2   Google Scholar


  Google Scholar

Karasan, A. & Gaygısız, E. (2022). Volatility Prediction and Risk Management: An SVR-GARCH. SSRN. http://dx.doi.org/10.2139/ssrn.4285524
DOI: https://doi.org/10.2139/ssrn.4285524   Google Scholar

Kristjanpoller, W., Fadic, A., & Minutolo, M. C. (2014). Volatility forecast using hybrid neural network models. Expert Systems with Applications, 41(5), 2437-2442. https://doi.org/10.1016/j.eswa.2013.09.043
DOI: https://doi.org/10.1016/j.eswa.2013.09.043   Google Scholar

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.2307/2975974
DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x   Google Scholar

Bildirici, M., & Ersin, Ö. (2014). Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns. The Scientific World Journal, 2014, 497941. https://doi.org/10.1155/2014/497941
DOI: https://doi.org/10.1155/2014/497941   Google Scholar

Monfared, S. A., & Enke, D. (2014). Volatility Forecasting Using a Hybrid GJR-GARCH Neural Network Model. Procedia Computer Science, 36, 246-253. https://doi.org/10.1016/j.procs.2014.09.087
DOI: https://doi.org/10.1016/j.procs.2014.09.087   Google Scholar

Rodríguez - Vargas, A. (2020). Forecasting Costa Rica inflation with machine learning methods. Latin American Journal of Central Banking, 1,(1-4), 100012. https://doi.org/10.1016/j.latcb.2020.100012
DOI: https://doi.org/10.1016/j.latcb.2020.100012   Google Scholar

Roghani, A. (2016). Artificial Neural Networks: Applications in Financial Forecasting. CreateSpace Independent Publishing Platform.
  Google Scholar

Satria, D. (2023). Predicting Banking Stock Prices Using RNN, LSTM, and GRU Approach. Applied Computer Science, 19(1) 82-84. https://doi.org/10.35784/acs-2023-06
DOI: https://doi.org/10.35784/acs-2023-06   Google Scholar

Scholkopf, B., Smola, A. (2018). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning series. MIT Press.
DOI: https://doi.org/10.7551/mitpress/4175.001.0001   Google Scholar

Shen, Z., Wan, Q., & Leatham, D. J. (2021). Bitcoin Return Volatility Forecasting: A Comparative Study between GARCH and RNN. Risk and Financial Management, 14(7), 337. https://doi.org/10.3390/jrfm14070337
DOI: https://doi.org/10.3390/jrfm14070337   Google Scholar

Sun, H., & Yu, B. (2020). Forecasting Financial Returns Volatility: A GARCH-SVR Model. Computational Economics, 55, 451–47. https://doi.org/10.1007/s10614-019-09896-w
DOI: https://doi.org/10.1007/s10614-019-09896-w   Google Scholar

Verma, S. (2021). Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach. Intelligent Systems in Accounting, Finance and Management, 28(2), 130–142. https://doi.org/10.1002/isaf.1489
DOI: https://doi.org/10.1002/isaf.1489   Google Scholar

Wang, L. (2005). Support Vector Machines: Theory and Applications. In Wang, L. (ed.), Studies in Fuzziness and Soft Computing. ( vol. 177). Springer.
DOI: https://doi.org/10.1007/b95439   Google Scholar

Y, X., Wen, X., & Y, X. (2023). Time series prediction and application based on multi-kernel support vector regression. Second International Symposium on Computer Applications and Information Systems, 12721. https://doi.org/10.1117/12.2683400
  Google Scholar

Yi, X., Wen, X., & Yin, X. (2023). Time series prediction and application based on multi-kernel support vector regression. Second International Symposium on Computer Applications and Information Systems (ISCAIS 2023), 12721. https://doi.org/10.1117/12.2683400
DOI: https://doi.org/10.1117/12.2683400   Google Scholar

Yamaka, W., Srichaikul, W., & Maneejuk, P. (2021). Support Vector Machine-Based GARCH-type Models: Evidence from ASEAN-5 Stock Markets. In: Ngoc Thach, N., Kreinovich, V., Trung, N.D. (eds), Data Science for Financial Econometrics. Studies in Computational Intelligence ( vol. 898, pp. 369-381). Springer, https://doi.org/10.1007/978-3-030-48853-6_26
DOI: https://doi.org/10.1007/978-3-030-48853-6_26   Google Scholar

Zahid, M., Iqbal, F., Koutmos, D. (2022). Forecasting Bitcoin Volatility Using Hybrid GARCH Models with Machine Learning. Risks, 10(12), 237. https://doi.org/10.3390/risks10120237
DOI: https://doi.org/10.3390/risks10120237   Google Scholar

Zhang, C., Zhang, Y., Cucuringu, M., & Qian, Z. (2022). Volatility forecasting with machine learning and intraday commonality. arXiv. https://doi.org/10.48550/arXiv.2202.08962
DOI: https://doi.org/10.2139/ssrn.4022147   Google Scholar

Zhang, G. & Qian, G. (2021). Out-of-sample realized volatility forecasting: does the support vector regression compete combination methods. Applied Economics, 53(19), 2192-2205. https://doi.org/10.1080/00036846.2020.1856326
DOI: https://doi.org/10.1080/00036846.2020.1856326   Google Scholar

Download


Published
2023-09-30

Cited by

CHUNG, V., & ESPINOZA, J. (2023). A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION. Applied Computer Science, 19(3), 1–16. https://doi.org/10.35784/acs-2023-21

Authors

Victor CHUNG 
vchung@unprg.edu.pe
Universidad Nacional Pedro Ruiz Gallo, FACFyM Peru
https://orcid.org/0000-0002-8358-3939

Authors

Jenny ESPINOZA 

Universidad Tecnológica del Perú Peru

Statistics

Abstract views: 513
PDF downloads: 199


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.