APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES
Article Sidebar
Open full text
Issue Vol. 19 No. 2 (2023)
-
CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC
Nouhaila BOUALOULOU, Taoufiq BELHOUSSINE DRISSI, Benayad NSIRI1-24
-
MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK
Qingyu Liu, Roben A. Juanatas25-42
-
APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES
Mariano LARIOS, Perfecto M. QUINTERO-FLORES , Mario ANZURES-GARCÍA , Miguel CAMACHO-HERNANDEZ43-54
-
APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM
Tomasz Sikora, Wanda Gryglewicz-Kacerka55-62
-
THE POTENTIAL FOR REAL-TIME TESTING OF HIGH FREQUENCY TRADING STRATEGIES THROUGH A DEVELOPED TOOL DURING VOLATILE MARKET CONDITIONS
Mantas Vaitonis, Konstantinas Korovkinas63-81
-
NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT
Thanh-Lam BUI, Ngoc-Tien TRAN82-95
-
A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL
Krzysztof Michalczyk, Mariusz Warzecha, Robert Baran96-111
-
HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES
Mouna TARIK, Ayoub MNIAI, Khalid JEBARI112-124
-
CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti125-146
-
EXPLOITING BERT FOR MALFORMED SEGMENTATION DETECTION TO IMPROVE SCIENTIFIC WRITINGS
Abdelrahman Halawa, Shehab Gamalel-Din; Abdurrahman Nasr126-141
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper presents the application of a task scheduling algorithm called Fan on an artificial intelligence technique as genetic algorithms for the problem of finding minima in objective functions, where the equations are predefined to measure the return on an investment. This work combines the methodologies of exploration and exploitation of a population, obtaining results with good aptitudes until finding a better learning based on conditions of not ending until an individual delivers a better aptitude, complying with the established restrictions, exhausting all possible options and fulfilling a stop condition. A real-time task planning algorithm was applied based on consensus techniques. A software tool was developed, and the scheduler called FAN was adapted that contemplates the execution of periodic, aperiodic, and sporadic tasks focused on controlled environments, considering that strict time restrictions are met. In the first phase of the work, it is shown how convergence precipitates to an evolution, this is done in few iterations. In a second stage, exploitation was improved, giving the algorithm a better performance in convergence and feasibility. As a result, there is the exploitation of the population and applying iterations with the fan algorithm and better aptitudes were obtained that occur through asynchronized processes under real-time planning concurrently.
Keywords:
References
Bertuccelli, L., Beckers, W., & Cummings, M. (2010, August). Developing operator models for UAV search scheduling. In AIAA Guidance, Navigation, and Control Conference (p. 7863). DOI: https://doi.org/10.2514/6.2010-7863
Cheng, S. L., & Hwang, C. (2001). Optimal approximation of linear systems by a differential evolution algorithm. IEEE Transactions on Systems, man, and cybernetics-part a: systems and humans, 31(6), 698-707. DOI: https://doi.org/10.1109/3468.983425
Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics and engineering, 186(2-4), 311-338. DOI: https://doi.org/10.1016/S0045-7825(99)00389-8
Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. simulation, 76(2), 60-68. DOI: https://doi.org/10.1177/003754970107600201
Jeong, S., Simeone, O., & Kang, J. (2017). Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning. IEEE Transactions on Vehicular Technology, 67(3), 2049-2063. DOI: https://doi.org/10.1109/TVT.2017.2706308
Kim, B., Jung, J., Min, H., & Heo, J. (2021). Energy efficient and real-time remote sensing in AI-powered drone. Mobile Information Systems, 2021. DOI: https://doi.org/10.1155/2021/6650053
Larios-Gómez, M., Carrera, J. M., Anzures-García, M., Aldama-Díaz, A., & Trinidad-García, G. (2019). A Scheduling Algorithm for a Platform in Real Time. In International Conference on Supercomputing in Mexico (pp. 3-10). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-10448-1_1
Lim, G. J., Kim, S., Cho, J., Gong, Y., & Khodaei, A. (2016). Multi-UAV pre-positioning and routing for power network damage assessment. IEEE Transactions on Smart Grid, 9(4), 3643-3651. DOI: https://doi.org/10.1109/TSG.2016.2637408
Nasiri, J., & Khiyabani, F. M. (2018). A whale optimization algorithm (WOA) approach for clustering. Cogent Mathematics & Statistics, 5(1), 1483565. DOI: https://doi.org/10.1080/25742558.2018.1483565
Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2018). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603-615. DOI: https://doi.org/10.1007/s10845-015-1039-3
Barbosa-Mendez, M. A., Portilla-Flores, E. A., Vega-Alvarado, E., Calva-Yáñez, M. B., & Sepúlveda-Cervantes, G. (2019, September). A harmony search variant based on a novel synthesized approach for constrained numerical optimization. In 2019 16th international conference on electrical engineering, computing science and automatic control (CCE) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICEEE.2019.8884555
Portilla-Flores, E. A., Sánchez-Márquez, Á., Flores-Pulido, L., Vega-Alvarado, E., Yáñez, M. B. C., Aponte-Rodríguez, J. A., & Niño-Suárez, P. A. (2017). Enhancing the harmony search algorithm performance on constrained numerical optimization. IEEE Access, 5, 25759-25780. DOI: https://doi.org/10.1109/ACCESS.2017.2771741
Ramasubramanian, V., Haas, Z. J., & Sirer, E. G. (2003, June). SHARP: A hybrid adaptive routing protocol for mobile ad hoc networks. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing (pp. 303-314). DOI: https://doi.org/10.1145/778415.778450
Saffre, F., Hildmann, H., Karvonen, H., & Lind, T. (2022). Self-swarming for multi-robot systems deployed for situational awareness. In New Developments and Environmental Applications of Drones (pp. 51-72). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-77860-6_3
Seyedali, M., & Andrew, L. (2016). The Whale Optimization Algorithm Advances in Engineering Software.
Soria, E., Schiano, F., & Floreano, D. (2021). Distributed Predictive Drone Swarms in Cluttered Environments. IEEE Robotics and Automation Letters, 7(1), 73-80. DOI: https://doi.org/10.1109/LRA.2021.3118091
Sreedhar, M., Reddy, S. A. N., Chakra, S. A., Kumar, T. S., Reddy, S. S., & Kumar, B. V. (2020). A review on advanced optimization algorithms in multidisciplinary applications. Recent Trends in Mechanical Engineering: Select Proceedings of ICIME 2019, 745-755. DOI: https://doi.org/10.1007/978-981-15-1124-0_66
Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341. DOI: https://doi.org/10.1023/A:1008202821328
Wu, Q., & Zhang, R. (2018). Common throughput maximization in UAV-enabled OFDMA systems with delay consideration. IEEE Transactions on Communications, 66(12), 6614-6627. DOI: https://doi.org/10.1109/TCOMM.2018.2865922
Article Details
Abstract views: 329
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
