BREAST CANCER CAD SYSTEM BY USING TRANSFER LEARNING AND ENHANCED ROI

Muayed S AL-HUSEINY

aalhuseiny@uowasity.edu.iq
Wasit University, Department of Electrical Engineering (Iraq)

Ahmed S SAJIT


Wasit University, College of Engineering (Iraq)

Abstract

Computer systems are being employed in specialized professions such as medical diagnosis to alleviate some of the costs and to improve dependability and scalability. This paper implements a computer aided breast cancer diagnosis system. It utilizes the publicly available mini MIAS mammography image dataset. Images are preprocessed to clean isolate breast tissue region. Extracted regions are used to adjust and verify a pretrained convolutional deep neural network, the GoogLeNet. The implemented model shows good performance results compared to other published works with accuracy of 86.6%, sensitivity of 75% and specificity of 88.9%. 


Keywords:

mammography, transfer learning, computer vision, image processing

Aach, T., Kaup, A., & Mester, R. (1995). On texture analysis: Local energy transforms versus quadrature filters. Signal Processing, 45(2), 173-181. https://doi.org/10.1016/0165-1684(95)00049-J
DOI: https://doi.org/10.1016/0165-1684(95)00049-J   Google Scholar

AL-Huseiny, M. S., Abbas, N. K., & Sajit, A. S. (2020). Diagnosis of arrhythmia based on ECG analysis using CNN. Bulletin of Electrical Engineering and Informatics, 9(3), 988–995. https://doi.org/10.11591/eei.v9i3.2172
DOI: https://doi.org/10.11591/eei.v9i3.2172   Google Scholar

AL-Huseiny, M. S., & Sajit, A. S. (2021). Transfer learning with GoogLeNet for detection of lung cancer. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1078–1086. https://doi.org/10.11591/ijeecs.v22.i2.pp1078-1086
DOI: https://doi.org/10.11591/ijeecs.v22.i2.pp1078-1086   Google Scholar

Al-Yasriy, H. F., Al-Husieny, M. S., Mohsen, F. Y., Khalil, E. A., & Hassan, Z. S. (2020). Diagnosis of lung cancer based on CT scans using CNN. IOP Conference Series: Materials Science and Engineering, 928, 022035. https://doi.org/10.1088/1757-899x/928/2/022035
DOI: https://doi.org/10.1088/1757-899X/928/2/022035   Google Scholar

Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J. L., & Guevara Lopez, M. A. (2016). Representation learning for mammography mass lesion classification with convolutional neural networks. Computer Methods and Programs in Biomedicine, 127, 248–257. https://doi.org/10.1016/j.cmpb.2015.12.014
DOI: https://doi.org/10.1016/j.cmpb.2015.12.014   Google Scholar

Batra, K., Sekhar, S., & Radha, R. (2020). Breast cancer detection using CNN on mammogram images. Computational Vision and Bio-Inspired Computing (pp. vol 1108). Springer. https://doi.org/10.1007/978-3-030-37218-7_80
DOI: https://doi.org/10.1007/978-3-030-37218-7_80   Google Scholar

Breast Cancer Facts and Statistics. (2018). Retrieved June 12, 2021 from https://www.breastcancer.org/facts-statistics
  Google Scholar

Breast cancer: prevention and control. (2008). World Health Organisation. https://www.who.int/cancer/detection/breastcancer/en/index1.html#:*:text=Breast%20cancer%0survival%20rates%20vary,et%20al.%2C%202008
  Google Scholar

Charan, S., Khan, M. J., & Khurshid, K. (2018). Breast cancer detection in mammograms using convolutional neural network. 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1–5). IEEE. https://doi.org/10.1109/ICOMET.2018.8346384
DOI: https://doi.org/10.1109/ICOMET.2018.8346384   Google Scholar

Convolutional neural network. (n.d.). Wikipedia Retrieved June 21, 2022 from https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=1029918158
  Google Scholar

Davis, L. E. (n.d.). What Is a Mammogram? Retrieved June 20, 2021 from https://www.verywellhealth.com/mammogram-what-to-expect-430283
  Google Scholar

Deep Learning Network Part Three: GoogLeNet Series. (n.d.). Retrieved June 15, 2021 from https://www.programmersought.com/article/85103454206/
  Google Scholar

Gabor filter. (n.d.). Wikipedia. Retrieved June 21, 2022 from https://en.wikipedia.org/w/index.php?title=Gabor_filter&oldid=993157632
  Google Scholar

Gonzalez, R. C., & Woods, R. E. (2006). Digital Image Processing (3rd Edition). Prentice-Hall, Inc.
  Google Scholar

Grgic, M., Delac, K., Bozek, J., & Rangayyan, R. M. (2021). Mammographic image analysis homepage. Video Communications Laboratory (VCL), Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia.
  Google Scholar

Jalalian, A., Mashohor, S. B., Mahmud, H. R., Saripan, M. I., Ramli, A. R., & Karasfi, B. (2013). Computeraided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clinical Imaging, 37(3), 420-426. https://doi.org/10.1016/j.clinimag.2012.09.024
DOI: https://doi.org/10.1016/j.clinimag.2012.09.024   Google Scholar

Jamieson, A. R., Drukker, K., & Giger, M. L. (2012). Breast image feature learning with adaptive deconvolutional networks. Proc. SPIE 8315, Medical Imaging 2012: Computer-Aided Diagnosis (no.831506). https://doi.org/10.1117/12.910710
DOI: https://doi.org/10.1117/12.910710   Google Scholar

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond Bags of features: spatial pyramid matching for recognizing natural scene categories. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) (pp. 2169-2178). IEEE. https://doi.org/10.1109/CVPR.2006.68
DOI: https://doi.org/10.1109/CVPR.2006.68   Google Scholar

Malgonde, S. (2021). Transfer learning using Tensorflow. https://medium.com/@subodh.malgonde/transferlearning-using-tensorflow-52a4f6bcde3e
  Google Scholar

Masud, M., Eldin Rashed, A. E., & Hossain, M. S. (2020). Convolutional neural network-based models for diagnosis of breast cancer. Neural Computing and Applications. Springer. https://doi.org/10.1007/s00521-020-05394-5
DOI: https://doi.org/10.1007/s00521-020-05394-5   Google Scholar

Melli, G. (2021). GoogLeNet. https://www.gabormelli.com/RKB/GoogLeNet
  Google Scholar

Otten, J. D. M., Karssemeijer, N., Hendriks, J. H. C. L., Groenewoud, J. H., Fracheboud, J., Verbeek, A. L. M., de Koning, H. J., & Holland, R. (2005). Effect of recall rate on earlier screen detection of breast cancers based on the dutch performance indicators. JNCI: Journal of the National Cancer Institute, 97(10), 748–754. https://doi.org/https://10.1093/jnci/dji131
DOI: https://doi.org/10.1093/jnci/dji131   Google Scholar

Petersen, K., Nielsen, M., Diao, P., Karssemeijer, N., & Lillholm, M. (2014). Breast tissue segmentation and mammographic risk scoring using deep learning. Breast Imaging. IWDM 2014. Lecture Notes in Computer Science (vol 8539). Springer. https://doi.org/10.1007/978-3-319-07887-8_13
DOI: https://doi.org/10.1007/978-3-319-07887-8_13   Google Scholar

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252. https://doi.org/10.1007/s11263-015-0816-y
DOI: https://doi.org/10.1007/s11263-015-0816-y   Google Scholar

Santos, L. (2019). Artificial Inelligence. GitBook.
  Google Scholar

Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016a). Breast cancer histopathological image classification using Convolutional Neural Networks. 2016 International Joint Conference on Neural Networks (IJCNN) (pp. 2560-2567). IEEE. https://doi.org/10.0.4.85/IJCNN.2016.7727519
DOI: https://doi.org/10.1109/IJCNN.2016.7727519   Google Scholar

Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016b). A Dataset for Breast Cancer Histopathological Image Classification. IEEE Transactions on Biomedical Engineering (TBME), 63(7), 1455–1462.
DOI: https://doi.org/10.1109/TBME.2015.2496264   Google Scholar

Suckling, J., Astley, S., Betal, D., Cerneaz, N., Dance, D. R., Kok, S.-L., Parker, J., Ricketts, I., Savage, J., Stamatakis, E., & Taylor, P. (1994). The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica. International Congress Series.
  Google Scholar

Survival. (n.d.). Retrieved August 20, 2022 from https://www.cancerresearchuk.org/about-cancer/breast-cancer/survival
  Google Scholar

Szegedy, C., Wei, L., Yangqing, J., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–9). IEEE. https://doi.org/10.1109/CVPR.2015.7298594
DOI: https://doi.org/10.1109/CVPR.2015.7298594   Google Scholar

Tan, Y. J., Sim, K. S., & Ting, F. F. (2017). Breast cancer detection using convolutional neural networks for mammogram imaging system. 2017 International Conference on Robotics, Automation and Sciences (ICORAS) (pp. 1–5). IEEE. https://doi.org/10.1109/ICORAS.2017.8308076
DOI: https://doi.org/10.1109/ICORAS.2017.8308076   Google Scholar

Tripathy, A. (2016). GoogLeNet Insights slideshare.net. https://www.youtube.com/watch?v=_XF7N6rp9Jw
  Google Scholar

Written evidence (RTR0073). (2022). Breast Cancer Now and UK Parliament. https://committees.parliament.uk/writtenevidence/42740/pdf/
  Google Scholar

Yadav, S.-P., & Yadav, S. (2020). Fusion of medical images in wavelet domain: a hybrid implementation. Computer Modeling in Engineering & Sciences, 122(1), 303-321. https://doi:10.32604/cmes.2020.08459
DOI: https://doi.org/10.32604/cmes.2020.08459   Google Scholar

Zainudin, Z., Shamsuddin, S. M., & Hasan, S. (2021). Deep layer convolutional neural network (CNN) Architecture for breast cancer classification using histopathological images. In A. E. Hassanien (Ed.), Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges (pp. 347–364). Springer Nature Switzerland. https:/doi.org/10.1007/978-3-030-59338-4_18
DOI: https://doi.org/10.1007/978-3-030-59338-4_18   Google Scholar

Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011). Adaptive deconvolutional networks for mid and high level feature learning. 2011 International Conference on Computer Vision (pp. 2018–2025). IEEE. https://doi.org/10.1109/ICCV.2011.6126474
DOI: https://doi.org/10.1109/ICCV.2011.6126474   Google Scholar

Zhang, W. (1990). Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Applied Optics, 29(32), 4790–4796. https://doi.org/10.1364/AO.29.004790
DOI: https://doi.org/10.1364/AO.29.004790   Google Scholar

Download


Published
2022-03-30

Cited by

AL-HUSEINY, M. S. ., & SAJIT, A. S. . (2022). BREAST CANCER CAD SYSTEM BY USING TRANSFER LEARNING AND ENHANCED ROI. Applied Computer Science, 18(1), 99–111. https://doi.org/10.35784/acs-2022-08

Authors

Muayed S AL-HUSEINY 
aalhuseiny@uowasity.edu.iq
Wasit University, Department of Electrical Engineering Iraq

Authors

Ahmed S SAJIT 

Wasit University, College of Engineering Iraq

Statistics

Abstract views: 215
PDF downloads: 107


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.