BLACK BOX EFFICIENCY MODELLING OF AN ELECTRIC DRIVE UNIT UTILIZING METHODS OF MACHINE LEARNING

Lukas BAUER

lukas.bauer@hs-aalen.de
Aalen University, Institute for Drive Technology (Germany)

Leon STÜTZ


Aalen University, Institute for Drive Technology (Germany)

Markus KLEY


Aalen University, Institute for Drive Technolog (Germany)

Abstract

The increasing electrification of powertrains leads to increased demands for the test technology to ensure the required functions. For conventional test rigs in particular, it is necessary to have knowledge of the test technology's capabilities that can be applied in practical testing. Modelling enables early knowledge of the test rigs dynamic capabilities and the feasibility of planned testing scenarios. This paper describes the modelling of complex subsystems by experimental modelling with artificial neural networks taking transmission efficiency as an example. For data generation, the experimental design and execution is described. The generated data is pre-processed with suitable methods and optimized for the neural networks. Modelling is executed with different variants of the inputs as well as different algorithms. The variants compare and compete with each other. The most suitable variant is validated using statistical methods and other adequate techniques. The result represents reality well and enables the performance investigation of the test systems in a realistic manner.


Keywords:

electromobility, powertrain, electric drives, artificial neural network, efficiency modelling

Albers, A., Behrendt, M., Klingler, S., & Matros, K. (2016). Verifikation und Validierung im Produktentstehungsprozess [E-Book]. In M. Behrendt, S. Klingler & K. Matros (Eds.), Handbuch Produktentwicklung (pp. 541–557). Carl Hanser Verlag. https://doi.org/10.3139/9783446445819.019
DOI: https://doi.org/10.3139/9783446445819.019   Google Scholar

Bauer, L., Bauer, M., & Kley, M. (2021). Modelbasierte Validierung der Prüfstandsdynamik zur Erprobung von Komponenten elektrifizierter Antriebsstränge mithilfe eines digitalen Zwillings. Stuttgarter Symposium für Produktentwicklung, SSP 2021, 105–116. https://doi.org/10.18419/opus-11478
  Google Scholar

Bauer, L., Beck, P., Stütz, L., & Kley, M. (2021). Enhanced efficiency prediction of an electrified off-highway vehicle transmission utilizing machine learning methods. Procedia Computer Science, 192, 417–426. https://doi.org/10.1016/j.procs.2021.08.043
DOI: https://doi.org/10.1016/j.procs.2021.08.043   Google Scholar

Beine, M., & Rasche, R. (2018). Datenmanagement für das szenariobasierte Testen. ATZextra, 23(S4), 20–25. https://doi.org/10.1007/s35778-018-0024-9
DOI: https://doi.org/10.1007/s35778-018-0024-9   Google Scholar

ÇElik, E., Gör, H., ÖZtürk, N., & Kurt, E. (2017). Application of artificial neural network to estimate power generation and efficiency of a new axial flux permanent magnet synchronous generator. International Journal of Hydrogen Energy, 42(28), 17692–17699. https://doi.org/10.1016/j.ijhydene.2017.01.168
DOI: https://doi.org/10.1016/j.ijhydene.2017.01.168   Google Scholar

Dismon, H. (2017). Wir sind gefordert, Entwicklungen schnell und treffsicher umzusetzen. MTZextra, 22(S1), 8–11. https://doi.org/10.1007/s41490-017-0009-4
DOI: https://doi.org/10.1007/s41490-017-0009-4   Google Scholar

Dohmen, H., Pfeiffer, K., & Schyr, C. (2009). Antriebsstrangprüftechnik: Vom stationären Komponententest zum fahrmanöverbasierten Testen (Die Bibliothek der Technik (BT)) (1. Aufl.). Süddeutscher Verlag onpact. German Environment Agency. (2020). Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2020.
  Google Scholar

Guggenmos, J., Rückert, J., Thalmair, S., & Wagner, M. (2018). Das Prüffeld der Antriebsentwicklung im Wandel. VPC – Simulation und Test 2015 (pp. 1–13). Springer. https://doi.org/10.1007/978-3-658-20736-6_1
DOI: https://doi.org/10.1007/978-3-658-20736-6_1   Google Scholar

Hoekstra, A. (2019). The Underestimated Potential of Battery Electric Vehicles to Reduce Emissions. Joule, 3(6), 1412–1414. https://doi.org/10.1016/j.joule.2019.06.002
DOI: https://doi.org/10.1016/j.joule.2019.06.002   Google Scholar

Isermann, R. (2007). Mechatronische Systeme. Springer.
  Google Scholar

Jazayeri, K., Jazayeri, M., & Uysal, S. (2016). Comparative Analysis of Levenberg-Marquardt and Bayesian Regularization Backpropagation Algorithms in Photovoltaic Power Estimation Using Artificial Neural Network. Advances in Data Mining. Applications and Theoretical Aspects (pp. 80–95). Springer. https://doi.org/10.1007/978-3-319-41561-1_7
DOI: https://doi.org/10.1007/978-3-319-41561-1_7   Google Scholar

Khan, A., Mohammadi, M. H., Ghorbanian, V., & Lowther, D. (2020). Efficiency Map Prediction of Motor Drives Using Deep Learning. IEEE Transactions on Magnetics, 56(3), 1–4. https://doi.org/10.1109/tmag.2019.2957162
DOI: https://doi.org/10.1109/TMAG.2019.2957162   Google Scholar

Li, Y. L., Kley, M., & Wang, S. J. (2014). Driveline Simulation of 2013 Formula Student Electric Racing Vehicle. Applied Mechanics and Materials, 541–542, 424–429. https://doi.org/10.4028/www.scientific.net/amm.541-542.424
DOI: https://doi.org/10.4028/www.scientific.net/AMM.541-542.424   Google Scholar

Machrowska, A., Karpiński, R., Jonak, J., & Krakowski, P. (2020). Numericalprediction of the component-ratiodependent compressive strength of bone cement. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24
  Google Scholar

Martini, E., Voß, H., Töpfer, S., & Isermann, R. (2003). Effiziente Motorapplikation mit lokal linearen neuronalen Netzen. MTZ - Motortechnische Zeitschrift, 64(5), 406–413. https://doi.org/10.1007/bf03226705
DOI: https://doi.org/10.1007/BF03226705   Google Scholar

Paulweber, M., & Lebert, K. (2014). Mess- und Prüfstandstechnik: Antriebsstrangentwicklung Hybridisierung Elektrifizierung (Der Fahrzeugantrieb) (2014. Aufl.). Springer. https://doi.org/10.1007/978-3-658-04453-4
DOI: https://doi.org/10.1007/978-3-658-04453-4   Google Scholar

Payal, A., Rai, C. S., & Reddy, B. V. R. (2013). Comparative analysis of Bayesian regularization and LevenbergMarquardt training algorithm for localization in wireless sensor network. 15th International Conference on Advanced Communications Technology (ICACT) (pp. 191–194). IEEE. https://ieeexplore.ieee.org/document/6488169
  Google Scholar

Ratov, D., & Lyfar, V. (2020). Modeling transmission mechanisms with determination of efficiency. Applied Computer Science, 16(1), 33–40. https://doi.org/10.23743/acs-2020-03
  Google Scholar

Stütz, J., Bauer, L., & Kley, M. (2019). Intelligente Lastkollektivoptimierung für Erprobungen von elektrischen und hybriden Antriebssträngen. Stuttgarter Symposium für Produktentwicklung SSP 2019 (pp. 93–102). Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO. https://doi.org/10.18419/opus-10394
  Google Scholar

Stütz, L., Beck, P., & Kley, M. (2021). Wirkungsgraduntersuchungen am Antriebsstrang von Multifunktionsfahrzeugen unter Berücksichtigung von empirisch ermittelten Lastkollektiven. Stuttgarter Symposium für Produktentwicklung SSP 2021 (pp. 445–454). Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO. https://doi.org/10.18419/opus-11478
  Google Scholar

The MathWorks. (2020). Statistics and Machine Learning Toolbox User’s Guide. The MathWorks.
  Google Scholar

Willmerding, G., & Häckh, J. (2017). Echtzeitsimulation hochdynamischer Fahrzeugantriebe. ASIM-Treffen STS/GMMS 2017 (pp. 192–198). Ulm.
  Google Scholar

Yadav, R. N., & Yadava, V. (2017). Artificial neural network modelling of erosion-abrasion-based hybrid machining of aluminium-silicon carbide-boron carbide composite. International Journal of Engineering Systems Modelling and Simulation, 9(2), 63–77. https://doi.org/10.1504/ijesms.2017.083223
DOI: https://doi.org/10.1504/IJESMS.2017.10003531   Google Scholar

Download


Published
2021-12-30

Cited by

BAUER, L. ., STÜTZ, L., & KLEY, M. (2021). BLACK BOX EFFICIENCY MODELLING OF AN ELECTRIC DRIVE UNIT UTILIZING METHODS OF MACHINE LEARNING. Applied Computer Science, 17(4), 5–19. https://doi.org/10.23743/acs-2021-25

Authors

Lukas BAUER 
lukas.bauer@hs-aalen.de
Aalen University, Institute for Drive Technology Germany

Authors

Leon STÜTZ 

Aalen University, Institute for Drive Technology Germany

Authors

Markus KLEY 

Aalen University, Institute for Drive Technolog Germany

Statistics

Abstract views: 188
PDF downloads: 45


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.