COMPUTATIONAL ANALYSIS OF PEM FUEL CELL UNDER DIFFERENT OPERATING CONDITIONS

Tomasz SEDERYN

t.seredyn@law.mil.pl
Polish Air Force University, General Education Department (Poland)
https://orcid.org/0000-0002-2841-8658

Małgorzata SKAWIŃSKA


Polish Air Force University (Poland)

Abstract

PEM fuel cells are one of the most promising sources of electrical energy and also have interesting properties. This research is purely theoretical and based on ANSYS Fluent software. Thus, the next step of the research should be the comparison of the solutions to other models and experimental results. The PEM fuel cell can be used as an energy source in the near future in a much more common way, although there are few modifications required, such as increasing efficiency and reducing production costs.

In general, a three-dimensional steady-state model of the polymer electrolyte membrane fuel cell implemented in Fluent was used to study a single channel flow inside such a PEMFC. The analysis concerns an aspect, that seems to be overlooked in this type of analysis, namely the influence of the substrate flow rate on the quality and efficiency of the chemical reaction, and thus on the value of the generated current for a given voltage. In addition, attention is also paid to the problem of the possible influence of the flow model - laminar or turbulent on the mentioned reaction rate. Such theoretical research is very useful and very much needed to design a new PEM fuel cells, utilizing Computational Fluid Dynamics (CFD) tool to statically monitor its performance for different boundary conditions.


Keywords:

PEMFC, CFD, fuel cell, hydrogen, polarization curve

Ahmadi, N., & Rostami, S. (2019). Enhancing the performance of polymer electrolyte membrane fuel cell by optimizing the operating parameter. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 220. https://doi.org/10.1007/s40430-019-1720-0
DOI: https://doi.org/10.1007/s40430-019-1720-0   Google Scholar

Akhtar, N., & Kerkhof, P. (2011). Effect of channel and rib width on transport phenomena within the cathode of a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 36(9), 5536-5549. https://doi.org/10.1016/j.ijhydene.2011.02.039
DOI: https://doi.org/10.1016/j.ijhydene.2011.02.039   Google Scholar

Albarbar, A., & Alrweq, M. (Eds.). (2018). Proton exchange membrane fuel cells: Design, modelling and performance assessment techniques. Springer.
DOI: https://doi.org/10.1007/978-3-319-70727-3   Google Scholar

ANSYS, Ins.. (2022). Fluent Theory Guide. http://www.ansys.com
  Google Scholar

ANSYS, Ins.. (2022). Fluent Users’s Guide. http://www.ansys.com
  Google Scholar

Askaripour, H. (2019). Effect of operating conditions on the performance of a PEM fuel cell. International Journal of Heat and Mass Transfer, 144(2019), 118705. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118705
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118705   Google Scholar

Cheng, Z., Luo, L., Huang, B., & Jian, O. (2021). Effect of humidification on distribution and uniformity of reactants and water content in PEMFC. International Journal of Hydrogen Energy, 46(52), 26560-26574. https://doi.org/10.1016/j.ijhydene.2021.05.129
DOI: https://doi.org/10.1016/j.ijhydene.2021.05.129   Google Scholar

Falcão, D. S., Gomes, P. J., Oliveira, V. B., Pinho, C., & Pinto, A. (2011). 1D and 3D numerical simulations in PEM fuel cells. International Journal of Hydrogen Energy, 36(19), 12486-12498. https://doi.org/10.1016/j.ijhydene.2011.06.133
DOI: https://doi.org/10.1016/j.ijhydene.2011.06.133   Google Scholar

Haddad, D., Oulmi, K., Benmoussa, H., Aouachria, Z., & Youcef, S. (2015). Modeling of heat yransfer in the PEMFC: Velocity inlet and current density effect. In I. Dincer, C. Colpan, O. Kizilkan & M. Ezan (Eds.), Progress in Clean Energy (pp. 463–473). Springer.
DOI: https://doi.org/10.1007/978-3-319-16709-1_33   Google Scholar

Hinaje, M., Raël, S., Caron, J. P., & Davat, B. (2012). An innovating application of PEM fuel cell: Current source controlled by hydrogen supply. International Journal of Hydrogen Energy, 37(17), 12481-12488. https://doi.org/10.1016/j.ijhydene.2012.05.153
DOI: https://doi.org/10.1016/j.ijhydene.2012.05.153   Google Scholar

Khalil, Y. F. (2018). Science-based framework for ensuring safe use of hydrogen as an energy carrier and anemission-free transportation fuel. Process Safety and Environmental Protection, 117, 326–340. https://doi.org/10.1016/j.psep.2018.05.011
DOI: https://doi.org/10.1016/j.psep.2018.05.011   Google Scholar

Kim, Y. B. (2012). Study on the effect of humidity and stoichiometry on the water saturation of PEM fuel cells. International Journal of Energy Research, 36(4), 509-522. https://doi.org/10.1002/er.1845
DOI: https://doi.org/10.1002/er.1845   Google Scholar

Liu, Q., Lan, F., Chen, J., Zeng, C., & Wang, J. (2022). A review of proton exchange membrane fuel cell water management: Membrane electrode assembly. Journal of Power Sources, 517, 230723. https://doi.org/10.1016/j.jpowsour.2021.230723
DOI: https://doi.org/10.1016/j.jpowsour.2021.230723   Google Scholar

Liu, Y., Tu, Z., & Chan, S. H. (2022). Performance enhancement in a H2/O2 PEMFC with dual-ejector recirculation. International Journal of Hydrogen Energy, 47(25), 12698-12710. https://doi.org/10.1016/j.ijhydene.2022.02.023
DOI: https://doi.org/10.1016/j.ijhydene.2022.02.023   Google Scholar

Pei, P., Ouyang, M., Feng, W., Lu, L., Huang, H., & Zhang, J. (2006). Hydrogen pressure drop characteristics in a fuel cell stack. International Journal of Hydrogen Energy, 31(3), 371-377. https://doi.org/10.1016/j.ijhydene.2005.08.008
DOI: https://doi.org/10.1016/j.ijhydene.2005.08.008   Google Scholar

Qin, Z., Huo, W., Bao, Z., Tongsh, Ch., Wang, B., Du, Q., & Jiao, K. (2022) Alternating flow field design improves the performance of proton exchange membrane fuel cells. Advanced Science, 10(4), 2205305. https://doi.org/10.1002/advs.202205305
DOI: https://doi.org/10.1002/advs.202205305   Google Scholar

Tellez-Cruz, M. M., Escorihuela, J., Solorza-Feria, O., & Compañ, V. (2021). Proton exchange membrane fuel cells (PEMFCs): advances and challenges. Polymers, 13(18), 3064. https://doi.org/10.3390/polym13183064
DOI: https://doi.org/10.3390/polym13183064   Google Scholar

Yue-Tzu, Y., Kuo-Teng, T., & Cha’o-Kuang, Ch. (2012). The effects of the PEM fuel cell performance with the waved glow channels. Journal of Applied Mathematics, 2013, 862645. http://dx.doi.org/10.1155/2013/862645
DOI: https://doi.org/10.1155/2013/862645   Google Scholar

Zeroual, M., Ben Moussa, H., & Tamerabet, M. (2012). Effect of gas flow velocity in the channels of consumption reactants in a fuel cell type (PEMFC). Energy Procedia, 18, 317-326. https://doi.org/10.1016/j.egypro.2012.05.043
DOI: https://doi.org/10.1016/j.egypro.2012.05.043   Google Scholar

Zhang, J., Li, H., & Zhang, J. (2009). Effect of operating backpressure on PEM fuel cell performance. ECS Transactions, 19(31), 65-76. https://doi: 10.1149/1.3271363
DOI: https://doi.org/10.1149/1.3271363   Google Scholar

Zhang, Y., Liu, C., Wan, Z., Yang, C., Li, S., Tu, Z., Wu, M., Chen, Y., & Zhou, W. (2021). Performance enhancement of PEM fuel cells with an additional outlet in the parallel flow field. Processes, 9(11), 2061. https://doi.org/10.3390/pr9112061
DOI: https://doi.org/10.3390/pr9112061   Google Scholar

Download


Published
2023-12-31

Cited by

SEDERYN, T., & SKAWIŃSKA, M. (2023). COMPUTATIONAL ANALYSIS OF PEM FUEL CELL UNDER DIFFERENT OPERATING CONDITIONS. Applied Computer Science, 19(4), 26–38. https://doi.org/10.35784/acs-2023-33

Authors

Tomasz SEDERYN 
t.seredyn@law.mil.pl
Polish Air Force University, General Education Department Poland
https://orcid.org/0000-0002-2841-8658

Authors

Małgorzata SKAWIŃSKA 

Polish Air Force University Poland

Statistics

Abstract views: 197
PDF downloads: 132


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.