SIMULATION STUDY OF HYDRODYNAMIC CAVITATION IN THE ORIFICE FLOW
Article Sidebar
Open full text
Issue Vol. 18 No. 3 (2022)
-
TOWARDS DIGITAL TWIN-DRIVEN PERFORMANCE EVALUATION METHODOLOGY OF FMS
Grzegorz BOCEWICZ, Robert WÓJCIK, Paweł SITEK, Zbigniew BANASZAK5-18
-
R PEAK DETERMINATION USING A WDFR ALGORITHM AND ADAPTIVE THRESHOLD
Thanh-Nghia NGUYEN, Thanh-Hai NGUYEN, Ba-Viet NGO19-30
-
SIMULATION STUDY OF HYDRODYNAMIC CAVITATION IN THE ORIFICE FLOW
Konrad PIETRYKOWSKI, Paweł KARPIŃSKI31-41
-
PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE
Andrij MILENIN42-53
-
APPLICATION OF SIMULATION RESEARCH TO ANALYSE THE PRODUCTION PROCESS IN TERMS OF SUSTAINABLE DEVELOPMENT
Agnieszka ZACHCIAŁ, Andrzej JARDZIOCH54-62
-
ANALYSIS OF THE USABILITY AND ACCESSIBILITY OF WEBSITES IN VIEW OF THEIR UNIVERSAL DESIGN PRINCIPLES
Błażej BADZIO, Agnieszka BODZIAK, Bartłomiej BRODAWKA, Karol BUCHAJCZUK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK63-85
-
COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION
Grzegorz SUCHANEK, Roman FILIPEK86-104
-
A SIX-PORT MEASUREMENT DEVICE FOR HIGH POWER MICROWAVE VECTOR NETWORK ANALYSIS
Benjamin KOMMEY, Ernest Ofosu ADDO, Elvis TAMAKLOE, Eric Tutu TCHAO, Henry NUNOO-MENSAH105-129
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Hydrodynamic cavitation is a phenomenon that can be used in the water treatment process. For this purpose, venturis or orifices varying in geometry are used. Studying this phenomenon under experimental conditions is challenging due to its high dynamics and difficulties in measuring and observing the phase transition of the liquid. For this reason, the CFD method was used to study the phenomenon of hydrodynamic cavitation occurring in water flow through the orifice and then analyze flow parameters for different boundary conditions. The research was performed for four different orifice geometries and two defined fluid pressure values at the inlet, based on a computational 2D model of the research object created in Ansys Fluent software. As a result of the numerical simulation, the distribution of fluid velocity and pressure and volume fraction of the gas phase were obtained. A qualitative and quantitative analysis of the phenomenon of hydrodynamic cavitation under the considered flow conditions was conducted for the defined orifice geometries. The largest cavitation zone and thus the largest volume fraction of the gas phase was obtained for the orifice diameter of 2 mm with a sharp increase in diameter. However, the geometry with a linear change in diameter provided the largest volume fraction of the gas phase per power unit.
Keywords:
References
Brennen, C. E. (2011). Hydrodynamics of pumps. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511976728
Capocelli, M., Musmarra, D., Prisciandaro, M., & Lancia, A. (2014). Chemical effect of hydrodynamic cavitation: simulation and experimental comparison. AIChE Journal, 60(7), 2566–2572. https://doi.org/10.1002/aic.14472 DOI: https://doi.org/10.1002/aic.14472
Ding, H., Visser, F. C., Jiang, Y., & Furmanczyk, M. (2011). Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications. Journal of fluids engineering, 133(1), 011101. https://doi.org/10.1115/1.4003196 DOI: https://doi.org/10.1115/1.4003196
Franc, J. P. (2006). Physics and control of cavitation. Grenoble Univ (France).
Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation–a review. Chemical Engineering Journal, 338, 599–627. https://doi.org/10.1016/j.cej.2018.01.049 DOI: https://doi.org/10.1016/j.cej.2018.01.049
Gogate, P. R., & Pandit, A. B. (2000). Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE Journal, 46(8), 1641–1649. https://doi.org/10.1002/aic.690460815 DOI: https://doi.org/10.1002/aic.690460815
Gogate, P. R., Tayal, R. K., & Pandit, A. B. (2006). Cavitation: a technology on the horizon. Current science, 91(1), 35–46.
Gogate, P. R., Thanekar, P. D., & Oke, A. P. (2020). Strategies to improve biological oxidation of real wastewater using cavitation based pre-treatment approaches. Ultrasonics Sonochemistry, 64, 105016. https://doi.org/10.1016/j.ultsonch.2020.105016 DOI: https://doi.org/10.1016/j.ultsonch.2020.105016
Iannetti, A., Stickland, M. T., & Dempster, W. M. (2016). A CFD and experimental study on cavitation in positive displacement pumps: Benefits and drawbacks of the ‘full’cavitation model. Engineering Applications of Computational Fluid Mechanics, 10(1), 57–71. https://doi.org/10.1080/19942060.2015.1110535 DOI: https://doi.org/10.1080/19942060.2015.1110535
Kunz, R. F., Boger, D. A., Chyczewski, T. S., Stinebring, D., Gibeling, H., & Govindan, T. (1999). Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In Proceedings of the 3rd ASME-JSME Joint Fluids Engineering Conference. American Society of Mechanical Engineers.
Menter, F. (1993). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference (p. 2906). DOI: https://doi.org/10.2514/6.1993-2906
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598–1605. DOI: https://doi.org/10.2514/3.12149
Moholkar, V. S., & Pandit, A. B. (1997). Bubble behavior in hydrodynamic cavitation: effect of turbulence. AIChE Journal, 43(6), 1641–1648. DOI: https://doi.org/10.1002/aic.690430628
Omelyanyuk, M., Ukolov, A., Pakhlyan, I., Bukharin, N., & El Hassan, M. (2022). Experimental and Numerical Study of Cavitation Number Limitations for Hydrodynamic Cavitation Inception Prediction. Fluids, 7(6), 198. https://doi.org/10.3390/fluids7060198 DOI: https://doi.org/10.3390/fluids7060198
Patil, P. B., Bhandari, V. M., & Ranade, V. V. (2021). Improving efficiency for removal of ammoniacal nitrogen from wastewaters using hydrodynamic cavitation. Ultrasonics Sonochemistry, 70, 105306. https://doi.org/10.1016/j.ultsonch.2020.105306 DOI: https://doi.org/10.1016/j.ultsonch.2020.105306
Salvatore, F., Streckwall, H., & Van Terwisga, T. (2009). Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In Proceedings of the first international symposium on marine propulsors, Trondheim, Norway (pp. 22–24).
Sauer, J., & Schnerr, G. H. (2001). Development of a new cavitation model based on bubble dynamics. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 81(S3 S3), 561–562. https://doi.org/10.1002/zamm.20010811559 DOI: https://doi.org/10.1002/zamm.20010811559
Schnerr, G. H., & Sauer, J. (2001). Physical and numerical modeling of unsteady cavitation dynamics. In Fourth international conference on multi-phase flow (Vol. 1). ICMF New Orleans.
Shi, H., Li, M., Nikrityuk, P., & Liu, Q. (2019). Experimental and numerical study of cavitation flows in venturi tubes: From CFD to an empirical model. Chemical Engineering Science, 207, 672–687. DOI: https://doi.org/10.1016/j.ces.2019.07.004
Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model. J. Fluids Eng., 124(3), 617–624. https://doi.org/10.1115/1.1486223 DOI: https://doi.org/10.1115/1.1486223
Subhas, S., Saji, V. F., Ramakrishna, S., & Das, H. N. (2012). CFD analysis of a propeller flow and cavitation. International Journal of Computer Applications, 55(16), 26–33. DOI: https://doi.org/10.5120/8841-3125
Tao, Y., Cai, J., Huai, X., Liu, B., & Guo, Z. (2016). Application of hydrodynamic cavitation to wastewater treatment. Chemical engineering & technology, 39(8), 1363–1376. https://doi.org/10.1002/ceat.201500362 DOI: https://doi.org/10.1002/ceat.201500362
Wang, B., Su, H., & Zhang, B. (2021). Hydrodynamic cavitation as a promising route for wastewater treatment– A review. Chemical Engineering Journal, 412, 128685. https://doi.org/10.1016/j.cej.2021.128685 DOI: https://doi.org/10.1016/j.cej.2021.128685
Zheng, X. B., Liu, L. L., Guo, P. C., Hong, F., & Luo, X. Q. (2018, July). Improved Schnerr-Sauer cavitation model for unsteady cavitating flow on NACA66. IOP Conference Series: Earth and Environmental Science, 163(1), 012020). DOI: https://doi.org/10.1088/1755-1315/163/1/012020
Zwart, P. J., Gerber, A. G., & Belamri, T. (2004, May). A two-phase flow model for predicting cavitation dynamics. In Fifth international conference on multi-phase flow, Yokohama, Japan ( No. 152).
Article Details
Abstract views: 527
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
