ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
Article Sidebar
Open full text
Issue Vol. 20 No. 1 (2024)
-
A NEW APPROACH FOR BREAST CANCER DETECTION- BASED MACHINE LEARNING TECHNIQUE
Malek M. AL-NAWASHI , Obaida M. AL-HAZAIMEH, Mutaz Kh. KHAZAALEH1–16
-
A STUDY ON AN AR-BASED CIRCUIT PRACTICE
Hae Chan Na, Yoon Sang Kim17-27
-
ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING
Ziadeddine MAKHLOUF, Abdallah MERAOUMIA , Laimeche LAKHDAR, Mohamed Yassine HAOUAM28–55
-
THE IMPACT OF APPLYING UNIVERSAL DESIGN PRINCIPLES ON THE USABILITY OF ONLINE ACCOMMODATION BOOKING WEBSITES
Katarzyna KUREK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK56-71
-
OPTIMIZING PEDESTRIAN TRACKING FOR ROBUST PERCEPTION WITH YOLOv8 AND DEEPSORT
Ghania ZIDANI, Djalal DJARAH, Abdslam BENMAKHLOUF, Laid KHETTACHE72-84
-
OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS.
Rumesh Edirimanne, W Madushan Fernando, Peter Nielsen, H. Niles Perera, Amila Thibbotuwawa85–105
-
EMOTION RECOGNITION FROM HEART RATE VARIABILITY WITH A HYBRID SYSTEM COMBINED HIDDEN MARKOV MODEL AND POINCARE PLOT
Sahar ZAMANI KHANGHAH, Keivan MAGHOOLI106-121
-
APPLICATION OF THERMAL IMAGING CAMERAS FOR SMARTPHONE: SEEK THERMAL COMPACT PRO AND FLIR ONE PRO FOR HUMAN STRESS DETECTION – COMPARISON AND STUDY
Katarzyna BARAN122-138
-
FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS
Alexandru Marius OBRETIN, Andreea Alina CORNEA139-156
-
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES
Jarelh Galdos, Nikolai Lopez, Angie Medina, Jorge Huarca, Jorge Rendulich, Erasmo Sulla157-172
-
KNOWLEDGE MANAGEMENT APPROACH IN COMPARATIVE STUDY OF AIR POLLUTION PREDICTION MODEL
Siti ROHAJAWATI, Hutanti SETYODEWI, Ferryansyah Muji Agustian TRESNANTO, Debora MARIANTHI, Maruli Tua Baja SIHOTANG173-188
-
ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
Eduardo Sánchez-García, Javier Martínez-Falcó, Bartolomé Marco-Lajara, Jolanta Słoniec189-207
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The application of computer science in management and economics is a rapidly growing field that combines the analytical and technological capabilities of computer science with the strategic and operational needs of management and economics. The main aim of this research paper is to analyze the main academic contributors, sources, and international collaborations from 2014 to 2022 in computer science in the areas of management and economics, as well as to analyze the main subtopics developed over time. Bibliometric techniques were used to carry out the literature review, which allows an objective analysis of the academic literature through quantitative indicators. The results reveal a significant shift towards data-driven decision making in management, with artificial intelligence and machine learning improving predictive analytics, operational efficiency, and economic forecasting and modeling, highlighting the essential role of digital transformation in these disciplines, with significant implications for researchers, practitioners and decision-makers. It concludes that all stakeholders should work to develop a more informed and innovative approach to maximize the exploitation of the potential offered by computational sciences in different contexts. This includes the integration of advanced computational tools to improve decision making and operational efficiency, or the exploitation of computational models for more effective forecasting and policy decision making, as well as the continuous analysis of emerging areas in this field, being aware of the ethical, privacy and security challenges presented by these technologies, in order to ensure a responsible and equitable application.
Keywords:
References
Abdurakhimovich, U. A. (2023). The Vital Role of Web Programming in the Digital Age. Journal of Science-Innovative Research in Uzbekistan, 1(6), 42-51. https://universalpublishings.com/index.php/jsiru/article/view/1933
Aggarwal, K., Mijwil, M. M., Al-Mistarehi, A. H., Alomari, S., Gök, M., Alaabdin, A. M. Z., & Abdulrhman, S. H. (2022). Has the future started? The current growth of artificial intelligence, machine learning, and deep learning. Iraqi Journal for Computer Science and Mathematics, 3(1), 115-123. http://dx.doi.org/10.52866/ijcsm.2022.01.01.013
Akter, S., McCarthy, G., Sajib, S., Michael, K., Dwivedi, Y. K., D’Ambra, J., & Shen, K. N. (2021). Algorithmic bias in data-driven innovation in the age of AI. International Journal of Information Management, 60, 102387. http://dx.doi.org/10.1016/j.ijinfomgt.2021.102387
Almeida, F., Santos, J. D., & Monteiro, J. A. (2020). The challenges and opportunities in the digitalization of companies in a post-COVID-19 World. IEEE Engineering Management Review, 48(3), 97-103. http://dx.doi.org/10.1109/emr.2020.3013206
Ardern, C. L., Büttner, F., Andrade, R., Weir, A., Ashe, M. C., Holden, S., ... & Winters, M. (2022). Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. British journal of sports medicine, 56(4), 175-195. http://dx.doi.org/10.1136/bjsports-2021-103987
Borgholthaus, C. J., White, J. V., & Harms, P. D. (2023). CEO dark personality: A critical review, bibliometric analysis, and research agenda. Personality and Individual Differences, 201, 111951. http://dx.doi.org/10.1016/j.paid.2022.111951
Boyadzhieva, Z., Nielsen, S. M., Buttgereit, F., Christensen, R., & Palmowski, A. (2023). Optimizing the reporting and conduct of systematic literature reviews and meta-analyses. Zeitschrift für Rheumatologie, 82(2), 175-176. http://dx.doi.org/10.1007/s00393-023-01329-2
Brauner, P., Dalibor, M., Jarke, M., Kunze, I., Koren, I., Lakemeyer, G., ... & Ziefle, M. (2022). A computer science perspective on digital transformation in production. ACM Transactions on Internet of Things, 3(2), 1-32. http://dx.doi.org/10.1145/3502265
Brem, A., Giones, F., & Werle, M. (2021). The AI digital revolution in innovation: A conceptual framework of artificial intelligence technologies for the management of innovation. IEEE Transactions on Engineering Management, 70(2), 770-776. http://dx.doi.org/10.1109/tem.2021.3109983
Carbonell-Alcocer, A., Romero-Luis, J., Gertrudix, M., & Wuebben, D. (2023). Datasets on the assessment of the scientific publication's corpora in circular economy and bioenergy approached from education and communication. Data in Brief, 47, 108958. http://dx.doi.org/10.1016/j.dib.2023.108958
Dima, A., Bugheanu, A. M., Boghian, R., & Madsen, D. Ø. (2022). Mapping Knowledge Area Analysis in E-Learning Systems Based on Cloud Computing. Electronics, 12(1), 62. http://dx.doi.org/10.3390/electronics12010062
Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105, 1809-1831.
Ellis, L. A., Churruca, K., Clay-Williams, R., Pomare, C., Austin, E. E., Long, J. C., ... & Braithwaite, J. (2019). Patterns of resilience: a scoping review and bibliometric analysis of resilient health care. Safety Science, 118, 241-257. http://dx.doi.org/10.1007/s11192-015-1645-z
Ferguson-Cradler, G. (2023). Narrative and computational text analysis in business and economic history. Scandinavian Economic History Review, 71(2), 103-127. http://dx.doi.org/10.1080/03585522.2021.1984299
García-Lillo, F., Seva-Larrosa, P., & Sánchez-García, E. (2023). What is going on in entrepreneurship research? A bibliometric and SNA analysis. Journal of Business Research, 158, 113624. http://dx.doi.org/10.1016/j.jbusres.2022.113624
Gregory, R. W., Henfridsson, O., Kaganer, E., & Kyriakou, H. (2021). The role of artificial intelligence and data network effects for creating user value. Academy of management review, 46(3), 534-551. http://dx.doi.org/10.5465/amr.2019.0178
Gupta, M., Parvathy, Givi, J., Dey, M., Kent Baker, H., & Das, G. (2023). A bibliometric analysis on gift giving. Psychology & Marketing, 40(4), 629-642. http://dx.doi.org/10.1002/mar.21785
Innocenti, T., Feller, D., Giagio, S., Salvioli, S., Minnucci, S., Brindisino, F., ... & Ostelo, R. (2022). Adherence to the PRISMA statement and its association with risk of bias in systematic reviews published in rehabilitation journals: A meta-research study. Brazilian Journal of Physical Therapy, 100450. http://dx.doi.org/10.1016/j.bjpt.2022.100450
Kalamara, E., Turrell, A., Redl, C., Kapetanios, G., & Kapadia, S. (2022). Making text count: economic forecasting using newspaper text. Journal of Applied Econometrics, 37(5), 896-919. http://dx.doi.org/10.1002/jae.2907
Karimjanova, R. M., & Soliyeva, G. A. (2022). The Role and Importance of Marketing Research in the Modernization of the Economy of the Republic. European journal of innovation in nonformal education, 2(1), 220-224. https://inovatus.es/index.php/ejine/article/view/212
Katsamakas, E., & Sanchez-Cartas, J. M. (2023). A computational model of the competitive effects of ESG. Plos one, 18(7), e0284237. http://dx.doi.org/10.1371/journal.pone.0284237
Khan, W. Z., Rehman, M. H., Zangoti, H. M., Afzal, M. K., Armi, N., & Salah, K. (2020). Industrial internet of things: Recent advances, enabling technologies and open challenges. Computers & electrical engineering, 81, 106522. http://dx.doi.org/10.1016/j.compeleceng.2019.106522
Kuroki, M. (2023). Integrating data science into an econometrics course with a Kaggle competition. The Journal of Economic Education, 1-15. http://dx.doi.org/10.1080/00220485.2023.2220695
Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive analytics in business analytics: decision tree. Advances in Decision Sciences, 26(1), 1-29. http://dx.doi.org/10.47654/v26y2022i1p1-29
Marco-Lajara, B., Martínez-Falcó, J., Sánchez-García, E., & Millan-Tudela, L. A. (2023a). Analyzing the Role of Renewable Energy in Meeting the Sustainable Development Goals: A Bibliometric Analysis. Energies, 16(7), 3137. http://dx.doi.org/10.3390/en16073137
Marco-Lajara, B., Martínez-Falcó, J., Millan-Tudela, L. A., & Sánchez-García, E. (2023b). Analysis of the structure of scientific knowledge on wine tourism: A bibliometric analysis. Heliyon, 9, e13363. http://dx.doi.org/10.1016/j.heliyon.2023.e13363
Martínez-Falcó, J., Marco-Lajara, B., Sánchez-García, E., & Visser, G. (2023a). Aligning the Sustainable Development Goals in the Wine Industry: A Bibliometric Analysis. Sustainability, 15(10), 8172. http://dx.doi.org/10.3390/su15108172
Martínez-Falcó, J., Marco-Lajara, B., Sánchez-García, E., & Millan-Tudela, L. A. (2023b). Happiness Management in the Corporate Domain: A Bibliometric Analysis. In New Perspectives and Possibilities in Strategic Management in the 21st Century: Between Tradition and Modernity (pp. 86-104). IGI Global. http://dx.doi.org/10.4018/978-1-6684-9261-1.ch005
Migliavacca, M., Patel, R., Paltrinieri, A., & Goodell, J. W. (2022). Mapping impact investing: A bibliometric analysis. Journal of International Financial Markets, Institutions and Money, 81, 101679. http://dx.doi.org/10.1016/j.intfin.2022.101679
Milosz, E., & Milosz, M. (2014). Small computer enterprise on competitive market–decision simulation game for business training of computer science specialist. In ICERI2014 Proceedings (pp. 1831-1838). IATED. https://library.iated.org/view/MILOSZ2014SMA
Milosz, M., & Lukasik, E. (2015, March). Reengineering of computer science curriculum according to technology changes and market needs. In 2015 IEEE Global Engineering Education Conference (EDUCON) (pp. 689-693). IEEE. http://dx.doi.org/10.1109/educon.2015.7096044
Miłosz, M., & Kozhanova, A. (2016). Building dynamic models of technical-economic systems using Causal Diagrams. In INTED2016 Proceedings (pp. 6152-6160). IATED. http://dx.doi.org/10.21125/inted.2016.0464
Monaghan, S., Tippmann, E., & Coviello, N. (2020). Born digitals: Thoughts on their internationalization and a research agenda. Journal of International Business Studies, 51, 11-22. http://dx.doi.org/10.1057/s41267-019-00290-0
Montalvo-Falcón, J. V., Sánchez-García, E., Marco-Lajara, B., & Martínez-Falcó, J. (2023). Sustainability Research in the Wine Industry: A Bibliometric Approach. Agronomy, 13(3), 871. http://dx.doi.org/10.3390/agronomy13030871
Nazer, L. H., Zatarah, R., Waldrip, S., Ke, J. X. C., Moukheiber, M., Khanna, A. K., ... & Mathur, P. (2023). Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digital Health, 2(6), e0000278. http://dx.doi.org/10.1371/journal.pdig.0000278
Ni, L., Bausch, G., & Benjamin, R. (2023). Computer science teacher professional development and professional learning communities: A review of the research literature. Computer Science Education, 33(1), 29-60. http://dx.doi.org/10.1080/08993408.2021.1993666
Nojeem, L., Shun, M., Embouma, M., Inokon, A., & Browndi, I. (2023). Customer Relationship Management and Algebraic Multigrid: An Analysis of Integration and Performance. International Journal of Basic and Applied Sciences, 10(2023), 129-135.
Popescu, D. V., Dima, A., Radu, E., Dobrotă, E. M., & Dumitrache, V. M. (2022). Bibliometric analysis of the green deal policies in the food chain. Amfiteatru Economic, 24(60), 410-428. http://dx.doi.org/10.24818/ea/2022/60/410
Sadeeq, M. M., Abdulkareem, N. M., Zeebaree, S. R., Ahmed, D. M., Sami, A. S., & Zebari, R. R. (2021). IoT and Cloud computing issues, challenges and opportunities: A review. Qubahan Academic Journal, 1(2), 1-7. http://dx.doi.org/10.48161/qaj.v1n2a36
Sánchez-García, E., Martínez-Falcó, J., Marco-Lajara, B., & Millán-Tudela, L. A. (2023). Looking into literature in the field of circular supply chain and the subtopic from a customers’ perspective: A bibliometric approach. Journal of Cleaner Production, 417, 137900. http://dx.doi.org/10.1016/j.jclepro.2023.137900
Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5), 377. http://dx.doi.org/10.1007/s42979-021-00765-8
Sarker, I. H. (2022). Ai-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science, 3(2), 158. http://dx.doi.org/10.1007/s42979-022-01043-x
Schubert, V., Kuehner, S., Krauss, T., Trat, M., & Bender, J. (2023). Towards a B2B integration framework for smart services in Industry 4.0. Procedia Computer Science, 217, 1649-1659. http://dx.doi.org/10.1016/j.procs.2022.12.365
Sezgin, A., Orbay, K., & Orbay, M. (2022). Educational Research Review From Diverse Perspectives: A Bibliometric Analysis of Web of Science (2011–2020). SAGE Open, 12(4), 21582440221141628. http://dx.doi.org/10.1177/21582440221141628
Sharma, R., Shishodia, A., Gunasekaran, A., Min, H., & Munim, Z. H. (2022). The role of artificial intelligence in supply chain management: mapping the territory. International Journal of Production Research, 60(24), 7527-7550. http://dx.doi.org/10.1080/00207543.2022.2029611
Shin, D., & Park, Y. J. (2019). Role of fairness, accountability, and transparency in algorithmic affordance. Computers in Human Behavior, 98, 277-284. http://dx.doi.org/10.1016/j.chb.2019.04.019
Squazzoni, F., Polhill, J. G., Edmonds, B., Ahrweiler, P., Antosz, P., Scholz, G., ... & Gilbert, N. (2020). Computational models that matter during a global pandemic outbreak: A call to action. JASSS-The Journal of Artificial Societies and Social Simulation, 23(2), 10. http://dx.doi.org/10.18564/jasss.4298
Workentin, M., Castro Arteaga, M., Alamgir, A. K. M., & Kupka, C. F. (2022). PRISMA statement and Cochrane reviews: Striving to improve quality and validity of systematic reviews. Toronto, CA: Access Alliance. http://dx.doi.org/10.13140/RG.2.2.13610.29121
Yun, C., Shun, M., Jackson, K., Newiduom, L., & Browndi, I. (2023). Algebraic Multigrid and the Future of Computer Science. International Journal of Engineering and Applied Sciences, 11(2023), 167-172.
Zhao, C., Wu, M., Liu, J., Duan, Z., Shen, L., Shangguan, X., ... & Wang, Y. (2023a). Progress and Prospects of Data-Driven Stock Price Forecasting Research. International Journal of Cognitive Computing in Engineering. 4, 100-108. http://dx.doi.org/10.1016/j.ijcce.2023.03.001
Zhao, L., Yang, M. M., Wang, Z., & Michelson, G. (2023b). Trends in the dynamic evolution of corporate social responsibility and leadership: A literature review and bibliometric analysis. Journal of Business Ethics, 182(1), 135-157. http://dx.doi.org/10.1007/s10551-022-05035-y
Article Details
Abstract views: 855
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
