A NEW APPROACH FOR BREAST CANCER DETECTION- BASED MACHINE LEARNING TECHNIQUE
Malek M. AL-NAWASHI
Nawashi@bau.edu.joAl-Balqa Applied University (Jordan)
https://orcid.org/0000-0001-5641-4892
Obaida M. AL-HAZAIMEH
a:1:{s:5:"en_US";s:27:"Al-Balqa Applied University";} (Jordan)
https://orcid.org/0000-0002-5231-8155
Mutaz Kh. KHAZAALEH
Al-Balqa Applied University (Jordan)
https://orcid.org/0000-0002-2071-7020
Abstract
The leading cause of cancer-related mortality is breast cancer. Breast cancer detection at an early stage is crucial. Data on breast cancer can be diagnosed using a number of different Machine learning approaches. Automated breast cancer diagnosis using a Machine Learning model is introduced in this research. Features were selected using Convolutional Neural Networks (CNNs) as a classifier model, and noise was removed using Contrast Limited Adaptive Histogram Equalization (CLAHE). On top of that, the research compares five algorithms: Random Forest, SVM, KNN, Naïve Bayes classifier, and Logistic Regression. An extensive dataset of 3002 combined images was used to test the system. The dataset included information from 1400 individuals who underwent digital mammography between 2007 and 2015. Accuracy and precision are the metrics by which the system's performance is evaluated. Due to its low computing power requirements and excellent accuracy, our suggested model is shown to be quite efficient in the simulation results.
Keywords:
machine learning, breast cancer, CNN, image processing, healthcareReferences
Al-hazaimeh, O., Alomari, S. A., Alsakran, J., & Alhindawi, N. (2014). Cross correlation–new based technique for speaker recognition. Int J Acad Res, 6, 232-239.
Google Scholar
Al-hazaimeh, O. M., Abu-Ein, A. A., Tahat, N. M., Al-Smadi, M. m. A., & Al-Nawashi, M. M. (2022). Combining Artificial Intelligence and Image Processing for Diagnosing Diabetic Retinopathy in Retinal Fundus Images. International Journal of Online & Biomedical Engineering, 18(13).
Google Scholar
Al-Hazaimeh, O. M., Al-Nawashi, M., & Saraee, M. (2019). Geometrical-based approach for robust human image detection. Multimedia Tools and Applications, 78, 7029-7053.
Google Scholar
Al-Hazaimeh, O. M., & Al-Smadi, M. (2019). Automated pedestrian recognition based on deep convolutional neural networks. International Journal of Machine Learning and Computing, 9(5), 662-667.
Google Scholar
Al-Nawashi, M., Al-Hazaimeh, O. M., & Saraee, M. (2017). A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments. Neural Computing and Applications, 28, 565-572.
Google Scholar
Alanazi, S. A., Kamruzzaman, M., Islam Sarker, M. N., Alruwaili, M., Alhwaiti, Y., Alshammari, N., & Siddiqi, M. H. (2021). Boosting breast cancer detection using convolutional neural network. Journal of Healthcare Engineering, 2021.
Google Scholar
Alhindawi, N., Al-Hazaimeh, O. M., Malkawi, R., & Alsakran, J. (2016). A Topic Modeling Based Solution for Confirming Software Documentation Quality. International Journal of Advanced Computer Science and Applications, 7(2).
Google Scholar
Barrios, C. H. (2022). Global challenges in breast cancer detection and treatment. The Breast, 62, S3-S6.
Google Scholar
Carlson, R. W., Allred, D. C., Anderson, B. O., Burstein, H. J., Carter, W. B., Edge, S. B., . . . Giordano, S. H. (2011). Invasive breast cancer. Journal of the National Comprehensive Cancer Network, 9(2), 136-222.
Google Scholar
Chang, P. J., Asher, A., & Smith, S. R. (2021). A targeted approach to post-mastectomy pain and persistent pain following breast cancer treatment. Cancers, 13(20), 5191.
Google Scholar
Desai, M., & Shah, M. (2021). An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical eHealth, 4, 1-11.
Google Scholar
DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., . . . Siegel, R. L. (2019). Breast cancer statistics, 2019. CA: a cancer journal for clinicians, 69(6), 438-451.
Google Scholar
Fatima, N., Liu, L., Hong, S., & Ahmed, H. (2020). Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access, 8, 150360-150376.
Google Scholar
Gharaibeh, N., Abu-Ein, A. A., Al-hazaimeh, O. M., Nahar, K. M., Abu-Ain, W. A., & Al-Nawashi, M. M. (2023). Swin Transformer-Based Segmentation and Multi-Scale Feature Pyramid Fusion Module for Alzheimer's Disease with Machine Learning. International Journal of Online & Biomedical Engineering, 19(4).
Google Scholar
Gharaibeh, N., Al-hazaimeh, O. M., Abu-Ein, A., & Nahar, K. (2021). A hybrid svm naïve-bayes classifier for bright lesions recognition in eye fundus images. International Journal on Electrical Engineering and Informatics, 13(3), 530-545.
Google Scholar
Gharaibeh, N., Al-Hazaimeh, O. M., Al-Naami, B., & Nahar, K. M. (2018). An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. International Journal of Signal and Imaging Systems Engineering, 11(4), 206-216.
Google Scholar
Hall, K., Chang, V., & Mitchell, P. (2022). Machine Learning Techniques for Breast Cancer Detection. Paper presented at the COMPLEXIS.
Google Scholar
Houssein, E. H., Emam, M. M., Ali, A. A., & Suganthan, P. N. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161.
Google Scholar
Kharya, S., Dubey, D., & Soni, S. (2013). Predictive machine learning techniques for breast cancer detection. International journal of computer science and information Technologies, 4(6), 1023-1028.
Google Scholar
Loibl, S., & Gianni, L. (2017). HER2-positive breast cancer. The Lancet, 389(10087), 2415-2429.
Google Scholar
Lu, W., Jansen, L., Post, W., Bonnema, J., Van de Velde, J., & De Bock, G. (2009). Impact on survival of early detection of isolated breast recurrences after the primary treatment for breast cancer: a meta-analysis. Breast cancer research and treatment, 114, 403-412.
Google Scholar
Ma'moun, A., Al-hazaimeh, O. M., Alhindawi, N., & Hayajneh, S. M. (2014). A dual curvature shell phased array simulation for delivery of high intensity focused ultrasound. Computer and Information Science, 7(3), 49.
Google Scholar
Mahmood, T., Arsalan, M., Owais, M., Lee, M. B., & Park, K. R. (2020). Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs. Journal of clinical medicine, 9(3), 749.
Google Scholar
Melekoodappattu, J. G., Dhas, A. S., Kandathil, B. K., & Adarsh, K. (2023). Breast cancer detection in mammogram: Combining modified CNN and texture feature based approach. Journal of Ambient Intelligence and Humanized Computing, 14(9), 11397-11406.
Google Scholar
Nahar, K., Al-Hazaimeh, O., Abu-Ein, A., & Gharaibeh, N. (2020). Phonocardiogram classification based on machine learning with multiple sound features. Journal of Computer Science, 16(11), 1648-1656.
Google Scholar
Nahar, K., Alhindawi, N., Al-Hazaimeh, O., Alkhatib, R., & Al-Akhras, A. (2018). NLP and IR based solution for confirming classification of research papers. Journal of Theoretical and Applied Information Technology, 96(16), 5269-5279.
Google Scholar
Nallamala, S. H., Mishra, P., & Koneru, S. V. (2019). Breast cancer detection using machine learning approaches. International Journal of Recent Technology and Engineering, 7(5), 478-481.
Google Scholar
Nanda, K., Bastian, L. A., & Schulz, K. (2002). Hormone replacement therapy and the risk of death from breast cancer: a systematic review. American journal of obstetrics and gynecology, 186(2), 325-334.
Google Scholar
Narod, S. A., Iqbal, J., Giannakeas, V., Sopik, V., & Sun, P. (2015). Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA oncology, 1(7), 888-896.
Google Scholar
Nguyen, C., Wang, Y., & Nguyen, H. N. (2013). Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic.
Google Scholar
Rajakumari, R., & Kalaivani, L. (2022). Breast Cancer Detection and Classification Using Deep CNN Techniques. Intelligent Automation & Soft Computing, 32(2).
Google Scholar
Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI signal processing systems for signal, image and video technology, 38, 35-44.
Google Scholar
Rivera-Franco, M. M., & Leon-Rodriguez, E. (2018). Delays in breast cancer detection and treatment in developing countries. Breast cancer: basic and clinical research, 12, 1178223417752677.
Google Scholar
Sivapriya, J., Kumar, A., Sai, S. S., & Sriram, S. (2019). Breast cancer prediction using machine learning. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 4879-4881.
Google Scholar
Svensson, B., Dylke, E., Ward, L., Black, D., & Kilbreath, S. L. (2020). Screening for breast cancer–related lymphoedema: self-assessment of symptoms and signs. Supportive Care in Cancer, 28, 3073-3080.
Google Scholar
Tagliafico, A. S., Piana, M., Schenone, D., Lai, R., Massone, A. M., & Houssami, N. (2020). Overview of radiomics in breast cancer diagnosis and prognostication. The Breast, 49, 74-80.
Google Scholar
Tanabe, K., Ikeda, M., Hayashi, M., Matsuo, K., Yasaka, M., Machida, H., . . . Hirasawa, T. (2020). Comprehensive serum glycopeptide spectra analysis combined with artificial intelligence (CSGSA-AI) to diagnose early-stage ovarian cancer. Cancers, 12(9), 2373.
Google Scholar
Tiwari, M., Bharuka, R., Shah, P., & Lokare, R. (2020). Breast cancer prediction using deep learning and machine learning techniques. Available at SSRN 3558786.
Google Scholar
Vaka, A. R., Soni, B., & Reddy, S. (2020). Breast cancer detection by leveraging Machine Learning. Ict Express, 6(4), 320-324.
Google Scholar
Vasundhara, S., Kiranmayee, B., & Suresh, C. (2019). Machine learning approach for breast cancer prediction. International Journal of Recent Technology and Engineering (IJRTE), 8(1).
Google Scholar
Wang, Z., Li, M., Wang, H., Jiang, H., Yao, Y., Zhang, H., & Xin, J. (2019). Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access, 7, 105146-105158.
Google Scholar
Wilkinson, L., & Gathani, T. (2022). Understanding breast cancer as a global health concern. The British Journal of Radiology, 95(1130), 20211033.
Google Scholar
Yassin, N. I., Omran, S., El Houby, E. M., & Allam, H. (2018). Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Computer methods and programs in biomedicine, 156, 25-45.
Google Scholar
Authors
Malek M. AL-NAWASHINawashi@bau.edu.jo
Al-Balqa Applied University Jordan
https://orcid.org/0000-0001-5641-4892
Authors
Obaida M. AL-HAZAIMEHa:1:{s:5:"en_US";s:27:"Al-Balqa Applied University";} Jordan
https://orcid.org/0000-0002-5231-8155
Authors
Mutaz Kh. KHAZAALEHAl-Balqa Applied University Jordan
https://orcid.org/0000-0002-2071-7020
Statistics
Abstract views: 508PDF downloads: 266
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL, HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI , FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE , Applied Computer Science: Vol. 20 No. 2 (2024)
- Anusha NALLAPAREDDY, DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Behnaz ESLAMI, Mehdi HABIBZADEH MOTLAGH, Zahra REZAEI, Mohammad ESLAMI, Mohammad AMIN AMINI, UNSUPERVISED DYNAMIC TOPIC MODEL FOR EXTRACTING ADVERSE DRUG REACTION FROM HEALTH FORUMS , Applied Computer Science: Vol. 16 No. 1 (2020)
- Thanh-Lam BUI, Ngoc-Tien TRAN, NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT , Applied Computer Science: Vol. 19 No. 2 (2023)
- Archana Gunakala, Afzal Hussain Shahid, A COMPARATIVE STUDY ON PERFORMANCE OF BASIC AND ENSEMBLE CLASSIFIERS WITH VARIOUS DATASETS , Applied Computer Science: Vol. 19 No. 1 (2023)
- Marcin BADUROWICZ, DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS , Applied Computer Science: Vol. 18 No. 1 (2022)
- Manikandan SRIDHARAN, Delphin Carolina RANI ARULANANDAM, Rajeswari K CHINNASAMY, Suma THIMMANNA, Sivabalaselvamani DHANDAPANI, RECOGNITION OF FONT AND TAMIL LETTER IN IMAGES USING DEEP LEARNING , Applied Computer Science: Vol. 17 No. 2 (2021)
- Olufemi Folorunso, Olufemi Akinyede, Kehinde Agbele, ARDP: SIMPLIFIED MACHINE LEARNING PREDICTOR FOR MISSING UNIDIMENSIONAL ACADEMIC RESULTS DATASET , Applied Computer Science: Vol. 19 No. 1 (2023)
- Victor CHUNG, Jenny ESPINOZA, A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION , Applied Computer Science: Vol. 19 No. 3 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.