DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE
Article Sidebar
Open full text
Issue Vol. 18 No. 1 (2022)
-
STRENGTH ANALYSIS OF A PROTOTYPE COMPOSITE HELICOPTER ROTOR BLADE SPAR
Rafał KLIZA, Karol ŚCISŁOWSKI, Ksenia SIADKOWSKA, Jacek PADYJASEK, Mirosław WENDEKER5-19
-
HISTOPATHOLOGY IMAGE CLASSIFICATION USING HYBRID PARALLEL STRUCTURED DEEP-CNN MODELS
Kevin Joy DSOUZA, Zahid Ahmed ANSARI20-36
-
DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE
Anusha NALLAPAREDDY45-55
-
ANALYSIS OF THE EFFECT OF PROJECTILE IMPACT ANGLE ON THE PUNCTURE OF A STEEL PLATE USING THE FINITE ELEMENT METHOD IN ABAQUS SOFTWARE
Kuba ROSŁANIEC56-69
-
IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION
Lubna RIYAZ, Muheet Ahmed BUTT, Majid ZAMAN70-88
-
DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS
Marcin BADUROWICZ89-98
-
BREAST CANCER CAD SYSTEM BY USING TRANSFER LEARNING AND ENHANCED ROI
Muayed S AL-HUSEINY, Ahmed S SAJIT99-111
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Detection and classification of vegetation is a crucial technical task in the management of natural resources since vegetation serves as a foundation for all living things and has a significant impact on climate change such as impacting terrestrial carbon dioxide (CO2). Traditional approaches for acquiring vegetation covers such as field surveys, map interpretation, collateral and data analysis are ineffective as they are time consuming and expensive. In this paper vegetation regions are automatically detected by applying simple but effective vegetation indices Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) on red(R) and near infrared (NIR) bands of Landsat-8 satellite image. Remote sensing technology makes it possible to analyze vegetation cover across wide areas in a cost-effective manner. Using remotely sensed images, the mapping of vegetation requires a number of factors, techniques, and methodologies. The rapid improvement of remote sensing technologies broadens possibilities for image sources making remotely sensed images more accessible. The dataset used in this paper is the R and NIR bands of Level-1 Tier 1 Landsat-8 optical remote sensing image acquired on 6th September 2013, is processed and made available to users on 2nd May 2017. The pre-processing involving sub-setting operation is performed using the ERDAS Imagine tool on R and NIR bands of Landsat-8 image. The NDVI and SAVI are utilized to extract vegetation features automatically by using python language. Finally by establishing a threshold, vegetation cover of the research area is detected and then classified.
Keywords:
References
Abburu, S., & Golla, S. B. (2015). An engineering evaluation on the glimpse of satellite image pre-processing utility tools. Article of Engineering Journal, 19(5), 1–10. https://doi.org/10.4186/ej.2015.19.2.129 DOI: https://doi.org/10.4186/ej.2015.19.2.129
Ahmad, A. M., Minallah, N., Ahmed, N., Ahmad, A. M., & Fazal, N. (2020). Remote sensing based vegetation classification using machine learning algorithms. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT) (pp. 1–6). IEEE. https://doi.org/10.1109/AECT47998.2020.9194217 DOI: https://doi.org/10.1109/AECT47998.2020.9194217
Asokan, A., Anitha, J., Ciobanu, M., Gabor, A., Naaji, A., & Hemanth, D. J. (2020). Image processing techniques for analysis of satellite images for historical maps classification – an overview. Appied Sciences, 10(12), 1–21. https://doi.org/10.3390/app10124207 DOI: https://doi.org/10.3390/app10124207
Bouhennache, R., Bouden, T., & Taleb, A. A. (2014). Change Detection in Urban Land Cover Using Landsat Images Satellites, A Case Study in Algiers Town. 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems (pp. 622–628). IEEE. https://doi.org/10.1109/SITIS.2014.57 DOI: https://doi.org/10.1109/SITIS.2014.57
Chen, X., Giri, C., & Vogelmann, J. E. (2016). Land-Cover Change Detection. Remote Sensing of Land Use and Land Cover (pp. 152–176). CRC Press. https://doi.org/10.1201/b11964-14 DOI: https://doi.org/10.1201/b11964-14
Dalponte, M., Marzini, S., Solano-Correa, Y. T., Tonon, G., Vescovo, L., & Gianelle, D. (2020). Mapping forest wind throws using high spatial resolution multispectral satellite images. International Journal of Applied Earth Observation Geoinformatics, 93, 102206. https://doi.org/10.1016/j.jag.2020.102206 DOI: https://doi.org/10.1016/j.jag.2020.102206
Dutta, D., Rahman, A., & Kundu, A. (2015). Growth of Dehradun city: An application of linear spectral unmixing (LSU) technique using multi-temporal landsat satellite data sets. Remote Sensing Applications: Society and Environment, 1, 98–111. https://doi.org/10.1016/j.rsase.2015.07.001 DOI: https://doi.org/10.1016/j.rsase.2015.07.001
Fatihaa, B., Abdelkaderb, A., Latifac, H., & Mohamedd, E. (2013). Spatio temporal analysis of vegetation by vegetation indices from multi-dates satellite images: Application to a semi arid area in ALGERIA. TerraGreen 13 International Conference 2013 – Advancements in Renewable Energy and Clean Environment, Elsevier, Energy Procedia, 36, 667–675. https://doi.org/10.1016/j.egypro.2013.07.077 DOI: https://doi.org/10.1016/j.egypro.2013.07.077
Gandhi, G. M., Parthiban, S., & Christy, N. T. (2015). Ndvi: Vegetation change detection using remote sensing and gis – A case study of Vellore District. 3rd International Conference on Recent Trends in Computing 2015, Elsevier, Procedia Computer Science, 57, 1199–1210. https://doi.org/10.1016/j.procs.2015.07.415 DOI: https://doi.org/10.1016/j.procs.2015.07.415
He, B., Zhang, H., Feng, S., Liu, X., Zhou, Y., & Guan, Y. (2020). Improving land cover change detection and classification with BRDF correction and spatial feature extraction using Landsat Time Series: A case of urbanization in Tianjin, China. IEEE Journal of Selecteed Topics in Applied Earth Observation. and Remote Sensing (vol 13, pp. 4166–4177). IEEE. https://doi.org/10.1109/JSTARS.2020.3007562 DOI: https://doi.org/10.1109/JSTARS.2020.3007562
Jing, X., Wang, J., Huang, W., Liu. L., & Wang, J. (2009). Study on Forest Vegetation Classification Based on Multitemporal Remote Sensing Images. Computer and Computing Technologies in Agriculture II, Volume 1. CCTA 2008. IFIP Advances in Information and Communication Technology (vol 293). Springer. https://doi.org/10.1007/978-1-4419-0209-2_13 DOI: https://doi.org/10.1007/978-1-4419-0209-2_13
Landsat Missions. (n.d.). Retrieved February 13, 2022 from https://www.usgs.gov/landsat-missions/landsatcollection-2-level-1-data
Langendoen, D., Navarro, G., Willner, W., Keith, D. A., Liu, C., Guo, K., & Meidinger, D. (2020). Perspectives on Terrestrial Biomes: The International Vegetation Classification. Encyclopedia of the World's Biomes, 2020, 1–15. https://doi.org/10.1016/B978-0-12-409548-9.12417-0 DOI: https://doi.org/10.1016/B978-0-12-409548-9.12417-0
Li, A., Lei, G., Zhao, W., Nan, X., & Zhang, Z. (2017). Post-earthquake Landslides Mapping from Landsat-8 Data for the 2015 Nepal Earthquake Using a Pixel-Based Change Detection Method. IEEE Journal of Selected Topics in Applied. Earth Observation and Remote Sensing, 10, 1758–1768. https://doi.org/10.1109/JSTARS.2017.2661802 DOI: https://doi.org/10.1109/JSTARS.2017.2661802
Omar, M. S., & Kawamukai, H. (2021). Prediction of NDVI using the Holt-Winters model in high and low vegetation regions: A case study of East Africa. Scientific African, 14, e01020. https://doi.org/10.1007/s40808-018-0431-3 DOI: https://doi.org/10.1016/j.sciaf.2021.e01020
Persson, H. J., Ulander, L. M. H., & Soja, M. J. (2018). Modeling and Detection of Deforestation and Forest Growth in Multitemporal TanDEM-X Data. IEEE Journal of Selected Topic in Appied Earth Observation and Remote sensing, 11, 3548–3563. https://doi.org/10.1109/JSTARS.2018.2851030 DOI: https://doi.org/10.1109/JSTARS.2018.2851030
Porikli, F., Bennamoun, M., Khan, S. H., & He, X. (2017). Forest change detection in incomplete satellite images with deep neural networks. IEEE Tranactions on Geoscience and Remote sensing, 52, 5407–5423. https://doi.org/10.1109/TGRS.2017.2707528 DOI: https://doi.org/10.1109/TGRS.2017.2707528
Rhyma, P. P., Norizah, K., Hamdan, O., Faridah-Hanum, I., & Zulfa, A. W. (2019). Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sensing
Applications: Society and Environment, 17, 1–14. https://doi.org/10.1016/j.rsase.2019.100280 DOI: https://doi.org/10.1016/j.rsase.2019.100280
Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward,
A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D., Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R. H., & Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001 DOI: https://doi.org/10.1016/j.rse.2014.02.001
Ruiz, L. F. C., Guasselli, L. A., Simioni, J. P. D., Belloli, T. F., & Fernandes, P. C. B. (2021). Object-based Classification of Vegetation species in a subtropical wetland using Sentinel-1 and Sentinel-2A images. Science of Remote Sensing, 3, 1–10. https://doi.org/10.1016/j.srs.2021.100017 DOI: https://doi.org/10.1016/j.srs.2021.100017
Schmidt, G., Jenkerson, C. B., Masek, J., Vermote, E., & Gao, F. (2013). Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description (vi, 9p.). U.S. Geological Survey openfile report, U.S. Geological Survey. https://doi.org/10.3133/ofr20131057 DOI: https://doi.org/10.3133/ofr20131057
Sowmya, D. R., Deepa, P., & Venugopal, K. (2017). Remote Sensing Satellite Image Processing Techniques for Image Classification: A Comprehensive Survey. International Journal of Computer Applications, 161, 24–37. https://doi.org/10.5120/ijca2017913306 DOI: https://doi.org/10.5120/ijca2017913306
Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Hindawi, Journal of Sensors, 2017, 1353691. https://doi.org/10.1155/2017/1353691 DOI: https://doi.org/10.1155/2017/1353691
Yu, M., Xie, Y., & Sha, Z. (2008). Remote sensing imagery in vegetation mapping. Journal of Plant Ecology, 1(1), 9–23. https://doi.org/10.1093/jpe/rtm005 DOI: https://doi.org/10.1093/jpe/rtm005
Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C., Wang, M., Dai, S., & Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sensing of Environment, 185, 243–257.https://doi.org/10.1016/j.rse.2016.03.036 DOI: https://doi.org/10.1016/j.rse.2016.03.036
Article Details
Abstract views: 263
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
