Granulation Of Porous Materials with Phase Change Material (PCM)
Article Sidebar
Issue Vol. 20 No. 3 (2021)
-
Effectivity of BIM transfer of structural models between programs for engineers
Oskar Kotlarz, Adam Wosatko005-024
-
Analysis of the state of preservation the historic arcaded houses in Vistula Delta listed in the National Inventory of Historical Monuments
Tomasz Zybala025-042
-
Role and Factors of Solar Façades Shaping in Contemporary Architecture
Janusz Marchwiński043-056
-
A universal standard for health-promoting places. Example of assessment – on the basis of a case study of Rahway River Park
Monika Trojanowska057-082
-
The role of reliable mining and construction analysis in adjudicating mining damage claims
Wojciech Kocot083-097
-
Has the introduction of the possibility to build a single-family house on the basis of notification really improved the development process? The analysis based on the example of the Capital City of Warsaw (Poland)
Sylwia Kołacińska, Tomasz Zaborowski099-118
-
Forgotten shelters of Kłodzko Land. On architecture inspired by the local building tradition
Jacek Suchodolski119-133
-
Granulation Of Porous Materials with Phase Change Material (PCM)
Tomasz Bien135-144
Archives
-
Vol. 22 No. 4
2023-12-29 9
-
Vol. 22 No. 3
2023-09-29 5
-
Vol. 22 No. 2
2023-06-30 3
-
Vol. 22 No. 1
2023-03-30 3
-
Vol. 21 No. 4
2022-12-14 8
-
Vol. 21 No. 3
2022-11-02 3
-
Vol. 21 No. 2
2022-08-31 3
-
Vol. 21 No. 1
2022-03-30 3
-
Vol. 20 No. 4
2021-12-29 6
-
Vol. 20 No. 3
2021-10-29 8
-
Vol. 20 No. 2
2021-06-02 8
-
Vol. 20 No. 1
2021-02-09 8
-
Vol. 19 No. 4
2020-11-02 11
-
Vol. 19 No. 3
2020-09-30 11
-
Vol. 19 No. 2
2020-06-30 10
-
Vol. 19 No. 1
2020-06-02 8
-
Vol. 18 No. 4
2020-04-23 8
-
Vol. 18 No. 3
2020-01-24 8
-
Vol. 18 No. 2
2019-11-20 8
-
Vol. 18 No. 1
2019-09-30 8
Main Article Content
DOI
Authors
Abstract
The paper describes the research on the method of production of granulated phase-change materials (PCM) used in construction industry for the accumulation of thermal energy. As mineral materials for the granules preparation zeolite from fly ash Na-P1 and natural diatomite dust were used which were impregnated with paraffinic filtration waste and granulated using a combined granulation method. Obtained granules were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherm, and differential scanning calorimetry (DSC). Mechanical strength of the materials was determined in a “drop strength” test. Performed analyses revealed that mineral composition and micromorphology of the diatomite and zeolite granules were varied, with zeolite granules having higher mechanical strength.
Keywords:
References
Bendkowska W., Kudrys J., “Thermal insulation of apparel textiles with PCM”, in: International Symposium Avantex, Frankfurt am Main, 27-29.11.2000.
Li L. Yu H., Liu R.,. "Research on composite-phase change materials (PCMs)-bricks in the west wall of room-scale cubicle: Mid-season and summer day cases", Building and Environment, vol. 123, (2017), pp. 494–503. https://doi.org/10.1016/J.BUILDENV.2017.07.019 DOI: https://doi.org/10.1016/j.buildenv.2017.07.019
Shobo A.B., Mawire A., Aucamp M., "Rapid thermal cycling of three phase change materials (PCMs) for cooking applications", Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, (2018), pp. 329–341. https://doi.org/10.1007/s40430-018-1253-y DOI: https://doi.org/10.1007/s40430-018-1253-y
Jeong Y.-G., Park K.-B., Lee H.-S., "An Experimental Study on the Thermal Performance of Cement Mortar with Granulated PCM", Journal of the Korea Institute of Building Construction, vol. 12, no. 5, (2012) pp. 548 - 557. https://doi.org/10.5345/JKIBC.2012.12.5.548 DOI: https://doi.org/10.5345/JKIBC.2012.12.5.548
da Cunha J.M.P., and Eames P. "Thermal energy storage for low and medium temperature applications using phase change materials –A review", Applied Energy, vol. 177, (2016), pp. 227–238. https://doi.org/10.1016/j.apenergy.2016.05.097 DOI: https://doi.org/10.1016/j.apenergy.2016.05.097
Zhang Y., Zhou G., Lin K., Zhang Q., Di H., "Application of latent heat thermal energy storage in buildings: State-of the art and outlook", Building and Environment, vol. 42, (2007), pp. 2197–2209. https://doi.org/10.1016/j.buildenv.2006.07.023 DOI: https://doi.org/10.1016/j.buildenv.2006.07.023
Mehling H., Cabeza L.F., "Heat and cold storage with PCM. An up to date introduction into basics and applications". Berlin: Springer-Verlag, 2008. https://doi.org/10.1007/978-3-540-68557-9 DOI: https://doi.org/10.1007/978-3-540-68557-9
Rumpf H., "The strength of granules and agglomerates", in Aggromeration, Interscience, Kneper W.A. (ed), New York: John Wiley, 1962, pp. 379-414.
Sterczyńska A., Deryło-Marczewska A., Sliwinska-Bartkowiak M. Piotrowska J.Z., Jarek M., Domin K., "Phase transitions of octamethylcyclotetrasiloxane confined inside aluminosilicate and silicate nanoporous matrices", Journal of Thermal Analysis and Calorimetry, vol. 118, no. 1, (2014), pp. 263-276. https://doi.org/10.1007/s10973-014-4008-8 DOI: https://doi.org/10.1007/s10973-014-4008-8
Ramakrishnan S., Sanjayan J., Wang X., Alam M., Wilson J.L., "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites", Applied Energy, vol. 157, (2015), pp. 85-94. http://dx.doi.org/10.1016/j.apenergy.2015.08.019 DOI: https://doi.org/10.1016/j.apenergy.2015.08.019
Sobolčiak P., Mustapha, K., Krupa I., AlMa'adeed, M., "Storage and Release of Thermal Energy of Phase Change Materials Based on Linear Low Density of Polyethylene, Parafin Wax and Expanded Graphite", in Proceedings of the TMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems, MEMA 2015, pp. 395-402. https://doi.org/10.1002/9781119090427.ch41 DOI: https://doi.org/10.1002/9781119090427.ch41
Wang L.L., Tianbo Z., Yang L., Hongjing D., "Method for Control of Particle Size and Morphology of Paraffin/Polystyrene-Divinylbenzene Microcapsules", China Petroleum Processing and Petrochemical Technology, vol. 18, (2016), pp. 73–82.
Mitran R.A., Berger D., Matei C., "Phase Change Materials Based On Mesoporous Silica", Current Organic Chemistry, vol. 22, no. 27, (2018), pp. 1-45. https://doi.org/10.2174/1385272822666180827125651 DOI: https://doi.org/10.2174/1385272822666180827125651
Kunecki P., Panek R., Wdowin M., Bień T., Franus W., "Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na-A, Na-P1, Na-X and sodalite zeolite types", International Journal of Coal Science & Technology, vol. 8, (2021), pp. 291-311. https://doi.org/10.1007/s40789-020-00332-1 DOI: https://doi.org/10.1007/s40789-020-00332-1
Article Details
Abstract views: 331
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
