Dynamic similarity criteria for simple cases of buildings and structures aerodynamics

Andrzej Flaga

andrzej.flaga@pk.edu.pl
Wind Engineering Laboratory; Faculty of Civil Engineering; Cracow University of Technology; (Poland)

Łukasz Flaga


Wind Engineering Laboratory; Faculty of Civil Engineering; Cracow University of Technology; (Poland)
https://orcid.org/0000-0001-9650-4913

Abstract

This work concerns the dynamic similarity criteria of various phenomena occurring in the aerodynamics of buildings and structures, originally derived from the ratios of forces and force moments affecting these phenomena. This paper is a continuation of [12], which addresses the foundations of dynamic similarity criteria formulated in this manner. At the end of [12], an authorial method and procedure for determining dynamic similarity criteria in fluid-solid interaction issues are presented. This method serves as the basis for the formulations and considerations of dynamic similarity criteria discussed further for various practical problems encountered in simple cases of building and structure aerodynamics, including self-exciting vibrations and wind-induced vibrations.


Keywords:

dynamic similarity criteria, wind-induced vibrations, aerodynamics, aeroelasticity

[1] Basu R. I., “Aerodynamic forces on structures of circular cross-section. Part 2. The influence of turbulence and three-dimensional effects”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 24, (1986), 33-59. https://doi.org/10.1016/0167-6105(86)90071-1
DOI: https://doi.org/10.1016/0167-6105(86)90071-1   Google Scholar

[2] Blevins R. D., Flow-induced vibration. Second Edition, Van Nostrand Reinhold, New York 1990.
  Google Scholar

[3] Blevins R. D., Burton T. E., “Fluid forces induced by vortex shedding”, Journal of Fluid Engineering, vol. 95 (1976), 19-24. https://doi.org/10.1115/1.3448196
DOI: https://doi.org/10.1115/1.3448196   Google Scholar

[4] Cook N. J., The designer’s guide to wind loading of building structures. Part I. Background damage, survey, wind data and structural classifications, Building Research Establishment, Butterworths, London 1985.
  Google Scholar

[5] Flaga A., “Quasi-steady theory in aerodynamics of slender structures”. Sonderforschungsbereich 151 – Tragwerksdynamik. Wissenschaftliche Mitteilungen, Berichte 25, Ruhr-Universität Bochum, 1994.
  Google Scholar

[6] Flaga A., “Quasi-steady models of wind load on slender structures, Part I. Case of a motionless structure”, Archives of Civil Engineering, vol. XL(1), 1994, 3-28.
  Google Scholar

[7] Flaga A., “Quasi-steady models of wind load on slender structures, Part II. Case of a moving structure”, Archives of Civil Engineering, vol. XL(1), 1994, 29-41.
  Google Scholar

[8] Flaga A., “Quasi-steady models of wind load on slender structures, Part III. Applications of quasi-steady theory in aerodynamics of slender structures”, Archives of Civil Engineering, vol. XLI(3), 1995, 343-376.
  Google Scholar

[9] Flaga A., Wind engineering. Fundamentals and applications, Arkady, Warszawa 2008 (in Polish).
  Google Scholar

[10] Flaga A., Wind vortex-induced excitation and vibration of slender structures – single structure of circular cross-section normal to flow. Fundamentals and applications, Monograph No.202, Cracow University of Technology, Cracow, 1996.
  Google Scholar

[11] Flaga A. “Nonlinear amplitude dependent self-limiting model of lock-in phenomenon at vortex excitation”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 69-71, (1997), pp. 331-340. https://doi.org/10.1016/S0167-6105(97)00166-9
DOI: https://doi.org/10.1016/S0167-6105(97)00166-9   Google Scholar

[12] Flaga A., Kłaput R., Flaga Ł., “Dynamic similarity criteria in fluid-solid interaction at different fluid-solid relative motions: part I – fundamentals”, Archives of Civil and Mechanical Engineering, vol. 23, (2023), 28. https://doi.org/10.1007/s43452-022-00547-w
DOI: https://doi.org/10.1007/s43452-022-00547-w   Google Scholar

[13] Griffin O. M., Skop R. A., Koopman G. H., “The vortex-excited resonant vibrations of circular cylinders”, Journal of Sound and Vibration, vol. 31(2), (1973), pp. 235-249. https://doi.org/10.1016/S0022-460X(73)80377-3
DOI: https://doi.org/10.1016/S0022-460X(73)80377-3   Google Scholar

[14] Griffin O. M., Ramberg S. E., “The vortex-street wakes of vibrating cylinders”, Journal of Fluid Mechanics, vol. 66(3), (1974), pp. 553-576. https://doi.org/10.1017/S002211207400036X
DOI: https://doi.org/10.1017/S002211207400036X   Google Scholar

[15] Griffin O. M., “A universal Strouhal number for the locking-on of vortex shedding to the vibrations of bluff cylinders”, Journal of Fluid Mechanics, vol. 85(3), (1978), pp. 591-606. https://doi.org/10.1017/S0022112078000804
DOI: https://doi.org/10.1017/S0022112078000804   Google Scholar

[16] Hartlen R. T., Currie I. G., “Lift-oscillator model of vortex-induced vibration”, Journal of the Engineering Mechanics Division, ASCE, vol. 96(EM5), (1970), pp. 577-591. https://doi.org/10.1061/JMCEA3.0001276
DOI: https://doi.org/10.1061/JMCEA3.0001276   Google Scholar

[17] Nakamura Y., Mizota Z., “Torsional flutter of rectangular prisms”, ASCE Journal of the Engineering Mechanics Division, vol. 101(2), (1975), pp. 125-142. https://doi.org/10.1061/JMCEA3.000200
DOI: https://doi.org/10.1061/JMCEA3.0002001   Google Scholar

[18] Nakamura Y., Tomonari Y., “Galloping of rectangular prisms in a smooth and in a turbulent flow”, Journal of Sound and Vibrations, vol. 52(2), (1977), pp. 233-241. https://doi.org/10.1016/0022-460X(77)90642-3
DOI: https://doi.org/10.1016/0022-460X(77)90642-3   Google Scholar

[19] Nowak M., “Aeroelastic galloping of prismatic bodies”. ASCE Journal of the Engineering Mechanics Division, vol. 96, (1969), 115-142. https://doi.org/10.1061/JMCEA3.000107
DOI: https://doi.org/10.1061/JMCEA3.0001072   Google Scholar

[20] Novak M., Tanaka H., “Effect of turbulence on galloping instability”, ASCE Journal of the Engineering Mechanics Division, vol. 100, (1974), pp. 27-47. https://doi.org/10.1061/JMCEA3.000186
DOI: https://doi.org/10.1061/JMCEA3.0001861   Google Scholar

[21] Parkinson G. V., Brooks N. P. H., “On the aeroelastic instability of bluff cylinders”, Journal of Applied Mechanics, vol. 28, (1961), pp. 252-258. https://doi.org/10.1115/1.3641663
DOI: https://doi.org/10.1115/1.3641663   Google Scholar

[22] Ruscheweyh H., Dynamische Windwirkung an Bauwerken. Band 2: Praktische Anwendungen. Bauverlag, Wiesbaden und Berlin, 1982.
  Google Scholar

[23] Ruscheweyh H., “Practical experiments with wind-induced vibrations”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 33, (1990), pp. 211-218. https://doi.org/10.1016/0167-6105(90)90036-C
DOI: https://doi.org/10.1016/0167-6105(90)90036-C   Google Scholar

[24] Scanlan R. H., Jones N. P., Lorendeaux O., “Comparison of taut-strip and Section-model-based approaches in long-span bridge aerodynamics”, in International Conference on Wind Engineering, New Delhi, vol. 2, (1995), pp. 950-961.
  Google Scholar

[25] Scanlan R. H., Tomko J. J., “Airfoil and bridge deck flutter derivatives”, Journal of Engineering Mechanics Division, ASCE, vol. 97(EMG), (1971), pp. 1717-1737. https://doi.org/10.1061/JMCEA3.000152
DOI: https://doi.org/10.1061/JMCEA3.0001526   Google Scholar

[26] Simiu E., Scanlan R., Wind effects on structures. An introduction to wind engineering. Fundamentals and applications to the design, Third edition, John Wiley & Sons, New York, 1996.
  Google Scholar

[27] Simiu E., Miyata T., Design and buildings and bridges for wind, John Wiley & Sons, Inc., New Jersey, 2006.
  Google Scholar

[28] Tamura Y., Matsui G., “Wake-oscillator model of vortex-induced oscillation of circular cylinder”, in Proc. 5th International Conference Wind Engineering, Fort Collins, Colorado, USA 1979, Pergamon, Oxford 1980, pp. 1085-1094.
DOI: https://doi.org/10.1016/B978-1-4832-8367-8.50100-5   Google Scholar

[29] Tamura Y., Amano A., “Mathematical model for vortex-induced oscillations of continuous systems with circular cross section”, Journal of Wind Engineering and Industrial Aerodynamics, 14, (1983), pp. 431-442. https://doi.org/10.1016/0167-6105(83)90044-2
DOI: https://doi.org/10.1016/0167-6105(83)90044-2   Google Scholar

[30] Vickery B. J., Basu R. I., “Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions”, Journal of Wind Engineering and Industrial Aerodynamics, 12(1), (1983), pp. 49-74. https://doi.org/10.1016/0167-6105(83)90080-6
DOI: https://doi.org/10.1016/0167-6105(83)90080-6   Google Scholar

[31] Vickery B. J., Basu R. I., “Across-wind vibrations of structures of circular cross-section. Part II. Development of a mathematical model for full-scale application”, Journal of Wind Engineering and Industrial Aerodynamics, 12(1), (1983), pp. 75-98. https://doi.org/10.1016/0167-6105(83)90081-8
DOI: https://doi.org/10.1016/0167-6105(83)90081-8   Google Scholar

[32] Vickery B. J., The response of chimneys and tower-like structures to wind loading. A state of the art in wind engineering, Wiley Eastern Limited, New Delhi, 1995, 205-233.
  Google Scholar

Download


Published
2024-12-16

Cited by

Flaga, A. and Flaga, Łukasz (2024) “Dynamic similarity criteria for simple cases of buildings and structures aerodynamics”, Budownictwo i Architektura, 23(4), pp. 041–062. doi: 10.35784/bud-arch.6323.

Authors

Andrzej Flaga 
andrzej.flaga@pk.edu.pl
Wind Engineering Laboratory; Faculty of Civil Engineering; Cracow University of Technology; Poland

Authors

Łukasz Flaga 

Wind Engineering Laboratory; Faculty of Civil Engineering; Cracow University of Technology; Poland
https://orcid.org/0000-0001-9650-4913

Statistics

Abstract views: 71
PDF downloads: 44


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.

Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.