Dynamic similarity criteria for simple cases of buildings and structures aerodynamics
Article Sidebar
Open full text
Issue Vol. 23 No. 4 (2024)
-
Architecture of the administrative centre of Kharkiv, the capital – laboratory for the creation of the New Man: from concept to implementation
Kateryna Didenko, Olena Gella005-023
-
Difficulties in rebuilding historic bridges after conflicts: the case of the Mosul stone bridge
Emad Ismaeel, Mahmood Alabaachi024-040
-
Dynamic similarity criteria for simple cases of buildings and structures aerodynamics
Andrzej Flaga, Łukasz Flaga041-062
-
Concrete production using marble powder and marble coarse aggregates: an analysis of mechanical properties and sustainability
Saloua Filali, Abdelkader Nasser063-081
-
Evaluation of lime plaster on masonry walls in historical buildings prior to renovation
Adrian Chajec, Anna Hoła, Jerzy Hoła, Łukasz Sadowski083-090
-
Interlocking passive brick set: the design of interlocking building components with connecting air cavities for heat dissipation and as a complement to the Heating, Ventilation, and Air Conditioning (HVAC) system
Kongphat Phaiboonnukulkij091-111
-
Methods for conducting analysis, planning, and preservation of the historical and cultural potential of urban riverside areas
Liudmyla Ruban113-127
-
Improving the properties of clay soils in foundations through compaction and the integration of fibres and cement
Abdelkader Fidjah, Mohamed Rabehi, Cheikh Kezrane, Asma Bendeb, Nour Elhouda Smain, Rachid Khalili129-149
-
The use of digital technologies in assessing the technical condition of historic structures
Bartosz Szostak, Michał Wac151-172
-
Management of energy renovation for traditional rural residential houses
Magdalena Szarejko173-190
-
Control of building safety through snow load monitoring
Roman Kinasz, Wiesław Bereza191-204
Archives
-
Vol. 24 No. 3
2025-09-30 13
-
Vol. 24 No. 2
2025-06-25 13
-
Vol. 24 No. 1
2025-03-31 12
-
Vol. 23 No. 4
2025-01-02 11
-
Vol. 23 No. 3
2024-10-07 10
-
Vol. 23 No. 2
2024-06-15 8
-
Vol. 23 No. 1
2024-03-29 6
-
Vol. 22 No. 4
2023-12-29 9
-
Vol. 22 No. 3
2023-09-29 5
-
Vol. 22 No. 2
2023-06-30 3
-
Vol. 22 No. 1
2023-03-30 3
-
Vol. 21 No. 4
2022-12-14 8
-
Vol. 21 No. 3
2022-11-02 3
-
Vol. 21 No. 2
2022-08-31 3
-
Vol. 21 No. 1
2022-03-30 3
-
Vol. 19 No. 4
2020-11-02 11
-
Vol. 19 No. 3
2020-09-30 11
-
Vol. 19 No. 2
2020-06-30 10
-
Vol. 19 No. 1
2020-06-02 8
Main Article Content
DOI
Authors
Abstract
This work concerns the dynamic similarity criteria of various phenomena occurring in the aerodynamics of buildings and structures, originally derived from the ratios of forces and force moments affecting these phenomena. This paper is a continuation of [12], which addresses the foundations of dynamic similarity criteria formulated in this manner. At the end of [12], an authorial method and procedure for determining dynamic similarity criteria in fluid-solid interaction issues are presented. This method serves as the basis for the formulations and considerations of dynamic similarity criteria discussed further for various practical problems encountered in simple cases of building and structure aerodynamics, including self-exciting vibrations and wind-induced vibrations.
Keywords:
References
[1] Basu R. I., “Aerodynamic forces on structures of circular cross-section. Part 2. The influence of turbulence and three-dimensional effects”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 24, (1986), 33-59. https://doi.org/10.1016/0167-6105(86)90071-1 DOI: https://doi.org/10.1016/0167-6105(86)90071-1
[2] Blevins R. D., Flow-induced vibration. Second Edition, Van Nostrand Reinhold, New York 1990.
[3] Blevins R. D., Burton T. E., “Fluid forces induced by vortex shedding”, Journal of Fluid Engineering, vol. 95 (1976), 19-24. https://doi.org/10.1115/1.3448196 DOI: https://doi.org/10.1115/1.3448196
[4] Cook N. J., The designer’s guide to wind loading of building structures. Part I. Background damage, survey, wind data and structural classifications, Building Research Establishment, Butterworths, London 1985.
[5] Flaga A., “Quasi-steady theory in aerodynamics of slender structures”. Sonderforschungsbereich 151 – Tragwerksdynamik. Wissenschaftliche Mitteilungen, Berichte 25, Ruhr-Universität Bochum, 1994.
[6] Flaga A., “Quasi-steady models of wind load on slender structures, Part I. Case of a motionless structure”, Archives of Civil Engineering, vol. XL(1), 1994, 3-28.
[7] Flaga A., “Quasi-steady models of wind load on slender structures, Part II. Case of a moving structure”, Archives of Civil Engineering, vol. XL(1), 1994, 29-41.
[8] Flaga A., “Quasi-steady models of wind load on slender structures, Part III. Applications of quasi-steady theory in aerodynamics of slender structures”, Archives of Civil Engineering, vol. XLI(3), 1995, 343-376.
[9] Flaga A., Wind engineering. Fundamentals and applications, Arkady, Warszawa 2008 (in Polish).
[10] Flaga A., Wind vortex-induced excitation and vibration of slender structures – single structure of circular cross-section normal to flow. Fundamentals and applications, Monograph No.202, Cracow University of Technology, Cracow, 1996.
[11] Flaga A. “Nonlinear amplitude dependent self-limiting model of lock-in phenomenon at vortex excitation”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 69-71, (1997), pp. 331-340. https://doi.org/10.1016/S0167-6105(97)00166-9 DOI: https://doi.org/10.1016/S0167-6105(97)00166-9
[12] Flaga A., Kłaput R., Flaga Ł., “Dynamic similarity criteria in fluid-solid interaction at different fluid-solid relative motions: part I – fundamentals”, Archives of Civil and Mechanical Engineering, vol. 23, (2023), 28. https://doi.org/10.1007/s43452-022-00547-w DOI: https://doi.org/10.1007/s43452-022-00547-w
[13] Griffin O. M., Skop R. A., Koopman G. H., “The vortex-excited resonant vibrations of circular cylinders”, Journal of Sound and Vibration, vol. 31(2), (1973), pp. 235-249. https://doi.org/10.1016/S0022-460X(73)80377-3 DOI: https://doi.org/10.1016/S0022-460X(73)80377-3
[14] Griffin O. M., Ramberg S. E., “The vortex-street wakes of vibrating cylinders”, Journal of Fluid Mechanics, vol. 66(3), (1974), pp. 553-576. https://doi.org/10.1017/S002211207400036X DOI: https://doi.org/10.1017/S002211207400036X
[15] Griffin O. M., “A universal Strouhal number for the locking-on of vortex shedding to the vibrations of bluff cylinders”, Journal of Fluid Mechanics, vol. 85(3), (1978), pp. 591-606. https://doi.org/10.1017/S0022112078000804 DOI: https://doi.org/10.1017/S0022112078000804
[16] Hartlen R. T., Currie I. G., “Lift-oscillator model of vortex-induced vibration”, Journal of the Engineering Mechanics Division, ASCE, vol. 96(EM5), (1970), pp. 577-591. https://doi.org/10.1061/JMCEA3.0001276 DOI: https://doi.org/10.1061/JMCEA3.0001276
[17] Nakamura Y., Mizota Z., “Torsional flutter of rectangular prisms”, ASCE Journal of the Engineering Mechanics Division, vol. 101(2), (1975), pp. 125-142. https://doi.org/10.1061/JMCEA3.000200 DOI: https://doi.org/10.1061/JMCEA3.0002001
[18] Nakamura Y., Tomonari Y., “Galloping of rectangular prisms in a smooth and in a turbulent flow”, Journal of Sound and Vibrations, vol. 52(2), (1977), pp. 233-241. https://doi.org/10.1016/0022-460X(77)90642-3 DOI: https://doi.org/10.1016/0022-460X(77)90642-3
[19] Nowak M., “Aeroelastic galloping of prismatic bodies”. ASCE Journal of the Engineering Mechanics Division, vol. 96, (1969), 115-142. https://doi.org/10.1061/JMCEA3.000107 DOI: https://doi.org/10.1061/JMCEA3.0001072
[20] Novak M., Tanaka H., “Effect of turbulence on galloping instability”, ASCE Journal of the Engineering Mechanics Division, vol. 100, (1974), pp. 27-47. https://doi.org/10.1061/JMCEA3.000186 DOI: https://doi.org/10.1061/JMCEA3.0001861
[21] Parkinson G. V., Brooks N. P. H., “On the aeroelastic instability of bluff cylinders”, Journal of Applied Mechanics, vol. 28, (1961), pp. 252-258. https://doi.org/10.1115/1.3641663 DOI: https://doi.org/10.1115/1.3641663
[22] Ruscheweyh H., Dynamische Windwirkung an Bauwerken. Band 2: Praktische Anwendungen. Bauverlag, Wiesbaden und Berlin, 1982.
[23] Ruscheweyh H., “Practical experiments with wind-induced vibrations”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 33, (1990), pp. 211-218. https://doi.org/10.1016/0167-6105(90)90036-C DOI: https://doi.org/10.1016/0167-6105(90)90036-C
[24] Scanlan R. H., Jones N. P., Lorendeaux O., “Comparison of taut-strip and Section-model-based approaches in long-span bridge aerodynamics”, in International Conference on Wind Engineering, New Delhi, vol. 2, (1995), pp. 950-961.
[25] Scanlan R. H., Tomko J. J., “Airfoil and bridge deck flutter derivatives”, Journal of Engineering Mechanics Division, ASCE, vol. 97(EMG), (1971), pp. 1717-1737. https://doi.org/10.1061/JMCEA3.000152 DOI: https://doi.org/10.1061/JMCEA3.0001526
[26] Simiu E., Scanlan R., Wind effects on structures. An introduction to wind engineering. Fundamentals and applications to the design, Third edition, John Wiley & Sons, New York, 1996.
[27] Simiu E., Miyata T., Design and buildings and bridges for wind, John Wiley & Sons, Inc., New Jersey, 2006.
[28] Tamura Y., Matsui G., “Wake-oscillator model of vortex-induced oscillation of circular cylinder”, in Proc. 5th International Conference Wind Engineering, Fort Collins, Colorado, USA 1979, Pergamon, Oxford 1980, pp. 1085-1094. DOI: https://doi.org/10.1016/B978-1-4832-8367-8.50100-5
[29] Tamura Y., Amano A., “Mathematical model for vortex-induced oscillations of continuous systems with circular cross section”, Journal of Wind Engineering and Industrial Aerodynamics, 14, (1983), pp. 431-442. https://doi.org/10.1016/0167-6105(83)90044-2 DOI: https://doi.org/10.1016/0167-6105(83)90044-2
[30] Vickery B. J., Basu R. I., “Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions”, Journal of Wind Engineering and Industrial Aerodynamics, 12(1), (1983), pp. 49-74. https://doi.org/10.1016/0167-6105(83)90080-6 DOI: https://doi.org/10.1016/0167-6105(83)90080-6
[31] Vickery B. J., Basu R. I., “Across-wind vibrations of structures of circular cross-section. Part II. Development of a mathematical model for full-scale application”, Journal of Wind Engineering and Industrial Aerodynamics, 12(1), (1983), pp. 75-98. https://doi.org/10.1016/0167-6105(83)90081-8 DOI: https://doi.org/10.1016/0167-6105(83)90081-8
[32] Vickery B. J., The response of chimneys and tower-like structures to wind loading. A state of the art in wind engineering, Wiley Eastern Limited, New Delhi, 1995, 205-233.
Article Details
Abstract views: 199
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
