An analysis of fracture toughness, at third mode fracture in concretes containing fly-ash additives

Grzegorz Golewski


Department of Civil Engineering Structures; Faculty of Civil Engineering and Architecture; Lublin University of Technology (Poland)
https://orcid.org/0000-0001-9325-666X

Abstract

This paper presents the results of fracture toughness tests of concrete with fly ash (FA), specified at the third model fracture. Concrete composites with the additives of 0%, 20% and 30% siliceous FA were analysed. Fracture toughness tests were performed on axial torsion machine MTS 809 Axial/Torsional Test System, using the cylindrical specimens with dimensions of 150/300 mm, with a circumferential notch made in the half-height of cylinders. The studies examined effect of FA additive on the parameter KIIIc. The Analysis of the results revealed that a 20% FA additive causes increase in KIIIc, while a 30% FA additive causes decrease in fracture toughness.


Keywords:

concrete, fly ash, fracture toughness, third mode fracture

Tkaczewska E., Małolepszy J. Wpływ uziarnienia krzemionkowych popiołów lotnych na odporność siarczanową cementu. Cement Wapno Beton 1 (2009) 26-33.
  Google Scholar

Giergiczny Z. Rola popiołów lotnych wapniowych i krzemionkowych w kształtowaniu właściwości współczesnych spoiw budowlanych i tworzyw cementowych. Seria: Inżyniera Lądowa. Monografia 325. Politechnika Krakowska, Kraków 2006.
  Google Scholar

Bastian S. Betony konstrukcyjne z popiołem lotnym. Arkady. Warszawa 1980.
  Google Scholar

Freidenberg E., Freidenberg P. Wpływ popiołów lotnych na wybrane właściwości betonów podwodnych. Przegląd Budowlany 10 (2007) 32-36.
  Google Scholar

Franus W. Characterization of X-type zeolite prepared from coal fly-ash. Polish Journal of Environmental Studies 21 (2012) 337-343.
  Google Scholar

Vejmelkova E, Pavlikova M, Keepert M., Kersner Z., Rovnanikova P., Ondracek M., Sedlmajer M. Cerny R. Wpływ popiołu lotnego na właściwości BWW. Cement Wapno Beton 4 (2009) 189-204.
  Google Scholar

Bharatkumar B. H., Raghu Prasad B. K., Ramachandramurthy D. S., Narayanan R., Gopalakrishnan S. Effect of fly ash and slag on the fracture characteristics of high performance . Materials and Structures 38 (2005) 63-72.
  Google Scholar

Tang W.C., Lo T. Y., Chan W. K. Fracture properties of normal and lightweight high-strength concrete. Magazine of Concrete Research 60 (2008) 237-244.
  Google Scholar

Reinhardt H. W., Ozbolt J., Xu S., Dinku A. Shear of structural concrete members and pure mode II testing. Advanced Cement Based Materials 5 (1997) 75-85.
  Google Scholar

Prokopski G. Mechanika pękania betonów cementowych. Politechnika Rzeszowska, Rzeszów 2007.
  Google Scholar

Brandt A. M., Pokropski G. Critical values of stress intensity factor in mode II fracture of cementitious composites. Journal of Materials Science 25 (1990) 3605-3610.
  Google Scholar

Golewski G. L., Sadowski T. S. Rola kruszywa grubego w procesie destrukcji kompozytów betonowych poddanych obciążeniom doraźnym. IZT Sp. z o.o., Lublin 2008.
  Google Scholar

Sadowski T., Golewski G. Effect of aggregate kind and graining on modeling of plain concrete under compression. Computational Materials Science 43 (2008) 119-126.
  Google Scholar

Van Mier J. G. M. Fracture processes of concrete. Assessment of material parameters for fracture models. CRC Press, Boca Raton, New York, London, Tokyo, Florida, 2000.
  Google Scholar

Golewski G. L., Golewski P., Sadowski T. Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Computational Materials Science 62 (2012) 75-78.
  Google Scholar

Golewski G. L. Mikrostruktura uszkodzeń w kompozytach betonowych z osnowami cementowymi. Kompozyty (Composites) 1 (2008) 93-98.
  Google Scholar

Golewski G. L., Sadowski T. Experimental investigation and numerical modelling fracture processes under Mode II in concrete composites containing fly-ash additive at early age. Solid State Phenomena 188 (2012) 158-163.
  Google Scholar

Suresh S., Tschegg E. K. Combined mode I - mode III fracture of fatigue-precracked alumina. Journal of American Ceramic Society 70 (1987) 726-733.
  Google Scholar

Ehart R. J. A., Stanzl-Tschegg S. E., Tschegg E. K. Crack face interaction and mixed-mode fracture of wood composites during mode III loading. Engineering Fracture Mechanics 61 (1988) 253-278.
  Google Scholar

Vaziri A., Nayeb-Hashemi H. The effect of crack surface intreraction on the stress intensity factor in mode III crack growth in round shafts. Engineering Fracture Mechanics 72 (2005) 617-629.
  Google Scholar

Bazant Z. P., Prat P. C. Measurement of mode III fracture energy of concrete. Nuclear Engineering and Design 106 (1988) 1-8.
  Google Scholar

Bazant Z.P., Prat P.C., Tabbara M.R. Antiplane shear fracture tests (Mode III). ACI Materials Journal 87 (1990) 12-19.
  Google Scholar

Nowak-Michta A. Mrozoodporność betonów z dodatkiem krzemionkowych popiołów lotnych. 55 Konferencja Naukowa KILiW PAN i KN PZITB, Kielce-Krynica 2009, 439-446.
  Google Scholar

Atis C. D. Accelerated carbonation and testing of concrete made with fly ash. Construction and Building Materials 17 (2003) 147-152.
DOI: https://doi.org/10.1016/S0950-0618(02)00116-2   Google Scholar

ASTM C 618-03 Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete.
  Google Scholar

PN-EN 450-1:2009 Popiół lotny do betonu. Część 1: Definicje, specyfikacje i kryteria zgodności.
  Google Scholar

Giergiczny E., Giergiczny Z. Wpływ zmiennej jakości popiołów lotnych na właściwości kompozytów cementowo-popiołowych. Cment Wapno Beton 3 (2010) 157-163.
  Google Scholar

Giergiczny Z. Popioły lotne z dużą zawartością związków wapnia. Cement Wapno Beton 5 (2005) 271-282.
  Google Scholar

Tkaczewska E. Metody badań aktywności pucolanowej dodatków mineralnych. Materiały Ceramiczne (Ceramic Materials) 63, 3 (2011) 536-541.
  Google Scholar


Published
2013-09-11

Cited by

Golewski, G. (2013) “An analysis of fracture toughness, at third mode fracture in concretes containing fly-ash additives”, Budownictwo i Architektura, 12(3), pp. 145–152. doi: 10.35784/bud-arch.2011.

Authors

Grzegorz Golewski 

Department of Civil Engineering Structures; Faculty of Civil Engineering and Architecture; Lublin University of Technology Poland
https://orcid.org/0000-0001-9325-666X

Statistics

Abstract views: 143
PDF downloads: 100


License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.

Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.