Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
W pracy przedstawiono wyniki badań odporności na pękanie, betonów z dodatkiem popiołów lotnych (pl), określane przy trzecim modelu pękania. Analizie poddano kompozyty betonowe wykonane z dodatkiem: 0, 20 i 30 % krzemionkowych pl. Badania odporności na pękanie przeprowadzono na maszynie osiowo skrętnej MTS 809 Axial/Torsional Test System, na próbkach walcowych o wymiarach 150/300 mm z obwodową szczeliną pierwotną wykonaną w połowie wysokości walców. W badaniach oceniano wpływ dodatku pl na wartość parametru KIIIc. Analiza uzyskanych wyników badań wykazała, że 20% dodatek pl powoduje wzrost KIIIc, natomiast dodatek 30% pl spadek odporności na pękanie.
Tkaczewska E., Małolepszy J. Wpływ uziarnienia krzemionkowych popiołów lotnych na odporność siarczanową cementu. Cement Wapno Beton 1 (2009) 26-33.
Google Scholar
Giergiczny Z. Rola popiołów lotnych wapniowych i krzemionkowych w kształtowaniu właściwości współczesnych spoiw budowlanych i tworzyw cementowych. Seria: Inżyniera Lądowa. Monografia 325. Politechnika Krakowska, Kraków 2006.
Google Scholar
Bastian S. Betony konstrukcyjne z popiołem lotnym. Arkady. Warszawa 1980.
Google Scholar
Freidenberg E., Freidenberg P. Wpływ popiołów lotnych na wybrane właściwości betonów podwodnych. Przegląd Budowlany 10 (2007) 32-36.
Google Scholar
Franus W. Characterization of X-type zeolite prepared from coal fly-ash. Polish Journal of Environmental Studies 21 (2012) 337-343.
Google Scholar
Vejmelkova E, Pavlikova M, Keepert M., Kersner Z., Rovnanikova P., Ondracek M., Sedlmajer M. Cerny R. Wpływ popiołu lotnego na właściwości BWW. Cement Wapno Beton 4 (2009) 189-204.
Google Scholar
Bharatkumar B. H., Raghu Prasad B. K., Ramachandramurthy D. S., Narayanan R., Gopalakrishnan S. Effect of fly ash and slag on the fracture characteristics of high performance . Materials and Structures 38 (2005) 63-72.
Google Scholar
Tang W.C., Lo T. Y., Chan W. K. Fracture properties of normal and lightweight high-strength concrete. Magazine of Concrete Research 60 (2008) 237-244.
Google Scholar
Reinhardt H. W., Ozbolt J., Xu S., Dinku A. Shear of structural concrete members and pure mode II testing. Advanced Cement Based Materials 5 (1997) 75-85.
Google Scholar
Prokopski G. Mechanika pękania betonów cementowych. Politechnika Rzeszowska, Rzeszów 2007.
Google Scholar
Brandt A. M., Pokropski G. Critical values of stress intensity factor in mode II fracture of cementitious composites. Journal of Materials Science 25 (1990) 3605-3610.
Google Scholar
Golewski G. L., Sadowski T. S. Rola kruszywa grubego w procesie destrukcji kompozytów betonowych poddanych obciążeniom doraźnym. IZT Sp. z o.o., Lublin 2008.
Google Scholar
Sadowski T., Golewski G. Effect of aggregate kind and graining on modeling of plain concrete under compression. Computational Materials Science 43 (2008) 119-126.
Google Scholar
Van Mier J. G. M. Fracture processes of concrete. Assessment of material parameters for fracture models. CRC Press, Boca Raton, New York, London, Tokyo, Florida, 2000.
Google Scholar
Golewski G. L., Golewski P., Sadowski T. Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Computational Materials Science 62 (2012) 75-78.
Google Scholar
Golewski G. L. Mikrostruktura uszkodzeń w kompozytach betonowych z osnowami cementowymi. Kompozyty (Composites) 1 (2008) 93-98.
Google Scholar
Golewski G. L., Sadowski T. Experimental investigation and numerical modelling fracture processes under Mode II in concrete composites containing fly-ash additive at early age. Solid State Phenomena 188 (2012) 158-163.
Google Scholar
Suresh S., Tschegg E. K. Combined mode I - mode III fracture of fatigue-precracked alumina. Journal of American Ceramic Society 70 (1987) 726-733.
Google Scholar
Ehart R. J. A., Stanzl-Tschegg S. E., Tschegg E. K. Crack face interaction and mixed-mode fracture of wood composites during mode III loading. Engineering Fracture Mechanics 61 (1988) 253-278.
Google Scholar
Vaziri A., Nayeb-Hashemi H. The effect of crack surface intreraction on the stress intensity factor in mode III crack growth in round shafts. Engineering Fracture Mechanics 72 (2005) 617-629.
Google Scholar
Bazant Z. P., Prat P. C. Measurement of mode III fracture energy of concrete. Nuclear Engineering and Design 106 (1988) 1-8.
Google Scholar
Bazant Z.P., Prat P.C., Tabbara M.R. Antiplane shear fracture tests (Mode III). ACI Materials Journal 87 (1990) 12-19.
Google Scholar
Nowak-Michta A. Mrozoodporność betonów z dodatkiem krzemionkowych popiołów lotnych. 55 Konferencja Naukowa KILiW PAN i KN PZITB, Kielce-Krynica 2009, 439-446.
Google Scholar
Atis C. D. Accelerated carbonation and testing of concrete made with fly ash. Construction and Building Materials 17 (2003) 147-152.
DOI: https://doi.org/10.1016/S0950-0618(02)00116-2
Google Scholar
ASTM C 618-03 Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete.
Google Scholar
PN-EN 450-1:2009 Popiół lotny do betonu. Część 1: Definicje, specyfikacje i kryteria zgodności.
Google Scholar
Giergiczny E., Giergiczny Z. Wpływ zmiennej jakości popiołów lotnych na właściwości kompozytów cementowo-popiołowych. Cment Wapno Beton 3 (2010) 157-163.
Google Scholar
Giergiczny Z. Popioły lotne z dużą zawartością związków wapnia. Cement Wapno Beton 5 (2005) 271-282.
Google Scholar
Tkaczewska E. Metody badań aktywności pucolanowej dodatków mineralnych. Materiały Ceramiczne (Ceramic Materials) 63, 3 (2011) 536-541.
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.