Physical and mechanical behaviour of recycled concrete under destructive and non-destructive testing
Lynda Amel Chaabane
Civil Engineering Department; Physico-Chemistry of Advanced Materials Laboratory (LPCMA); Djillali Liabès University; (Algeria)
https://orcid.org/0000-0003-0740-473X
Hamza Soualhi
hamza_s26@yahoo.frCivil Engineering Department; LRGC laboratory; Amar Telidji University; (Algeria)
https://orcid.org/0000-0002-9284-4416
Ilies Fellah
Civil Engineering Department; Physico-Chemistry of Advanced Materials Laboratory (LPCMA); Djillali Liabès University; (Algeria)
https://orcid.org/0009-0006-9265-7019
Yassine Khalfi
Energy and Process Engineering Department; LGPME laboratory; Djillali Liabès University; (Algeria)
https://orcid.org/0000-0003-4303-5118
Nadia Sirine Bouayed
Le Havre Normandie University; (France)
https://orcid.org/0009-0009-2506-2965
Abstract
Aggregates recycled from construction sites may exhibit slightly inferior characteristics compared to natural aggregates in terms of porosity, friability, and variability. However, it must be acknowledged that although recycled aggregates are currently used only in small proportions for manufacturing concrete, their usage is steadily increasing. It is now widely recognised that the reuse of recycled aggregates in mortar and concrete significantly contributes to the preservation of alluvial aggregates. The valorisation of recycled aggregates in concrete and mortar offers a clear economic advantage in the construction sector. Indeed, the reuse of materials from demolition could be envisaged directly on site or at construction waste recycling and treatment platforms. Additionally, it should be noted that to date, there is no specific standard for measuring the water absorption of recycled aggregates. Regarding the physical properties, the estimation of the absorption kinetics of the recycled aggregates has proved necessary. Moreover, other equally important measurements must be undertaken to determine all the other properties. The results obtained demonstrated that a good correlation exists between the substitution rate and the physical and mechanical properties of the prepared concrete. Furthermore, it was decided to vary the substitution rate of natural sand with recycled sand during the manufacture of concrete according to the following percentages: 25% recycled sand with 75% natural sand, and 50% recycled sand with 50% natural sand.
Keywords:
concrete, recycled gravel, recycled sand, physical tests, non-destructive testingReferences
Abina A. et al., “Challenges and opportunities of terahertz technology in construction and demolition waste management”, Journal of Environmental Management, vol. 315, (2022), p. 115118. https://doi.org/10.1016/j.jenvman.2022.115118
DOI: https://doi.org/10.1016/j.jenvman.2022.115118
Google Scholar
Yılmaz T. et al., “Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings”, Journal of Environmental Management, vol. 222, (2018), pp. 250–259. https://doi.org/10.1016/j.jenvman.2018.05.075
DOI: https://doi.org/10.1016/j.jenvman.2018.05.075
Google Scholar
Züst S. et al., “A graph based Monte Carlo simulation supporting a digital twin for the curatorial management of excavation and demolition material flows”, Journal of Cleaner Production, vol. 310, (2021), p. 127453. https://doi.org/10.1016/j.jclepro.2021.127453
DOI: https://doi.org/10.1016/j.jclepro.2021.127453
Google Scholar
Lederer J. et al., “Raw materials consumption and demolition waste generation of the urban building sector 2016–2050: A scenario-based material flow analysis of Vienna”, Journal of Cleaner Production, vol. 288, (2021), p. 125566. https://doi.org/10.1016/j.jclepro.2020.125566
DOI: https://doi.org/10.1016/j.jclepro.2020.125566
Google Scholar
Khan A.-R. et al., “Structural behaviour and strength prediction of recycled aggregate concrete beams”, Arabian Journal for Science and Engineering, vol. 45, no. 5, (2020), pp. 3611–3622. https://doi.org/10.1007/s13369-019-04195-w
DOI: https://doi.org/10.1007/s13369-019-04195-w
Google Scholar
Tammam Y. et al., “Effect of waste filler materials and recycled waste aggregates on the production of geopolymer composites”, Arabian Journal for Science and Engineering, vol. 48, no. 4, (2023), pp. 4823–4840. https://doi.org/10.1007/s13369-022-07230-5
DOI: https://doi.org/10.1007/s13369-022-07230-5
Google Scholar
Packrisamy K. and Jayakumar K., “Effect of ceramic tile waste as a fine aggregate on compressive strength, permeability, and microstructural properties of fly ash concrete”, Arabian Journal of Geosciences, vol. 15, no. 5, (2022), p. 407. https://doi.org/10.1007/s12517-022-09731-x
DOI: https://doi.org/10.1007/s12517-022-09731-x
Google Scholar
Chaabane L. A. et al., “Study and comparative approach to materials used in ancient Egypt and the modern era”, Arabian Journal of Geosciences, vol. 15, no. 5, (2022), p. 382. https://doi.org/10.1007/s12517-022-09648-5
DOI: https://doi.org/10.1007/s12517-022-09648-5
Google Scholar
Recyc-québec, “Bilan 2002 de la gestion des matières résiduelles au Québec”, 2002.
Google Scholar
The Recycling Partnership, “Increasing Recycling Rates with EPR Policy”, (2023).
Google Scholar
Le Moigne R., L’économie circulaire : stratégie pour un monde durable / Rémy Le Moigne. Dunod. Malakoff CN - 332.82, 2018.
Google Scholar
Commission des communautés européennes, “Décision n°2000/532/CE du 03/05/00 remplaçant la décision 94/3/CE établissant une liste de déchets en application de l ’ article 1er, point a), de la directive 75/442/CEE du Conseil relative aux déchets et la décision 94/904/CE du”, 2000.
Google Scholar
Debieb F. et al., “Mechanical and durability properties of concrete using contaminated recycled aggregates”, Cement and Concrete Composites, vol. 32, no. 6, (2010), pp. 421–426. https://doi.org/10.1016/j.cemconcomp.2010.03.004
DOI: https://doi.org/10.1016/j.cemconcomp.2010.03.004
Google Scholar
Levy S. M. and Helene P., “Durability of recycled aggregates concrete: a safe way to sustainable development”, Cement and Concrete Research, vol. 34, no. 11, (2004), pp. 1975–1980. https://doi.org/10.1016/j.cemconres.2004.02.009
DOI: https://doi.org/10.1016/j.cemconres.2004.02.009
Google Scholar
Evangelista L. and de Brito J., “Durability performance of concrete made with fine recycled concrete aggregates”, Cement and Concrete Composites, vol. 32, no. 1, (2010), pp. 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005
DOI: https://doi.org/10.1016/j.cemconcomp.2009.09.005
Google Scholar
Gómez-Soberón J. M. V, “Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study”, Cement and Concrete Research, vol. 32, no. 8, (2002), pp. 1301–1311. https://doi.org/10.1016/S0008-8846(02)00795-0
DOI: https://doi.org/10.1016/S0008-8846(02)00795-0
Google Scholar
Olorunsogo F. T. and Padayachee N., “Performance of recycled aggregate concrete monitored by durability indexes”, Cement and Concrete Research, vol. 32, no. 2, (2002), pp. 179–185. https://doi.org/10.1016/S0008-8846(01)00653-6
DOI: https://doi.org/10.1016/S0008-8846(01)00653-6
Google Scholar
Abbas S. et al., “Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates”, Construction and Building Materials, vol. 132, (2017), pp. 61–70. https://doi.org/10.1016/j.conbuildmat.2016.11.126
DOI: https://doi.org/10.1016/j.conbuildmat.2016.11.126
Google Scholar
Mamery S., “Béton à base de recyclats : influence du type de recyclats et rôle de la formulation”, Université Sciences et Technologies - Bordeaux I; Université Félix Houphouët-Boigny (Abidjan, Côte d’Ivoire), 2013.
Google Scholar
Bouali E. et al., “Rheological and mechanical properties of heavy density concrete including barite powder”, Arabian Journal for Science and Engineering, vol. 45, no. 5, (2020). https://doi.org/10.1007/s13369-019-04331-6
DOI: https://doi.org/10.1007/s13369-019-04331-6
Google Scholar
Mehta P. K. and Monteiro P. J. M., Concrete: microstructure, properties, and materials, 4th ed. ed. New York: McGraw-Hill Education, 2014.
Google Scholar
Oikonomou N. D., “Recycled concrete aggregates”, Cement and Concrete Composites, vol. 27, no. 2, (2005), pp. 315–318. https://doi.org/10.1016/j.cemconcomp.2004.02.020
DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.020
Google Scholar
Sri Ravindrarajah R., “Properties of concrete made with crushed concrete as coarse aggregate”, Magazine of Concrete Research, vol. 37, no. 130, (1985), pp. 29–38. https://doi.org/10.1680/macr.1985.37.130.29
DOI: https://doi.org/10.1680/macr.1985.37.130.29
Google Scholar
Weimann K. et al., “Building materials from waste”, Materials Transactions, vol. 44, no. 7, (2003), pp. 1255–1258. https://doi.org/10.2320/matertrans.44.1255
DOI: https://doi.org/10.2320/matertrans.44.1255
Google Scholar
IREX, “PN RECYBETON, Le recyclage complet du béton”, Paris, 2011.
Google Scholar
Jemmali N., “Influence de la forme et de la rugosité des particules d’un granulat sur les propriétés et les coûts du béton compacté au rouleau”, Université de Sherbrooke, 1996.
Google Scholar
Hansen T. C. and Narud H., “Strength of recycled concrete made from crushed concrete coarse aggregate”, Concrete International, vol. 5, (1983), pp. 79–83.
Google Scholar
Topçu İ. B. and Canbaz M., “Properties of concrete containing waste glass”, Cement and Concrete Research, vol. 34, no. 2, (2004), pp. 267–274. https://doi.org/10.1016/j.cemconres.2003.07.003
DOI: https://doi.org/10.1016/j.cemconres.2003.07.003
Google Scholar
Maillard J. ., “Evaluation de l’aptitude à l’emploi des sables de fonderie Publication technique”, 1997.
Google Scholar
Rahal K., “Mechanical properties of concrete with recycled coarse aggregate”, Building and Environment, vol. 42, no. 1, (2007), pp. 407–415. https://doi.org/10.1016/j.buildenv.2005.07.033
DOI: https://doi.org/10.1016/j.buildenv.2005.07.033
Google Scholar
Navaro J., “Cinétique de mélange des enrobés recyclés et influence sur les performances mécaniques”, 2011.
Google Scholar
Sindt O., “Propriétes mécaniques de films issus de latex synthétises en présence de tensioactifs copolymérisables”, 1997.
Google Scholar
Hussain H. et al., “Valorisation des agrégats issus de bétons de démolition dans la fabrication de nouveaux bétons”, Environnement, Ingénierie & Développement, vol. N°19-3èm, (2000), pp. 17–22. https://doi.org/10.4267/dechets-sciences-techniques.439
DOI: https://doi.org/10.4267/dechets-sciences-techniques.439
Google Scholar
Etxeberria M. et al., “Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete”, Cement and Concrete Research, vol. 37, no. 5, (2007), pp. 735–742. https://doi.org/10.1016/j.cemconres.2007.02.002
DOI: https://doi.org/10.1016/j.cemconres.2007.02.002
Google Scholar
Santamaria Diaz N. K., “Valorisation des granulats recyclés dans le béton pour les pavages et trottoirs”, (2018).
Google Scholar
Bodet R., “Substitution des granulats alluvionnaires dans l ’ industrie du béton par les granulats marins , concassés ou recyclés”, Epernon, 2003.
Google Scholar
Loranger F., “Caractérisation de matériaux recyclés (bétons, enrobés et fondations granulaires) et évaluation de leur performance dans les bétons conventionnels et compactés au rouleau”, Université Laval, 2001.
Google Scholar
Marquis B. et al., “L’utilisation des matériaux recyclés dans les chaussées : caractérisation, exigences techniques et contrôle.”, Innovation Transport, no. 6, (1999).
Google Scholar
Tam V. W. Y. et al., “New approach in measuring water absorption of recycled aggregates”, Construction and Building Materials, vol. 22, no. 3, (2008), pp. 364–369. https://doi.org/10.1016/j.conbuildmat.2006.08.009
DOI: https://doi.org/10.1016/j.conbuildmat.2006.08.009
Google Scholar
Toyoki A. and Amasaki S., “Study of the stress waves in the plunger of a rebound hammer at the time of impact”, ACI Symposium Publication, vol. 82, (1984), pp. 17–34. https://doi.org/10.14359/6547
Google Scholar
Ho A. cuong, “Optimisation de la composition et caractérisation d’un béton incorporant des granulats issus du broyage de pneus usagés. : application aux éléments de grande surface.”, 2010.
Google Scholar
Tu T. Y. et al., “Properties of HPC with recycled aggregates”, Cement and Concrete Research, vol. 36, no. 5, (2006), pp. 943–950. https://doi.org/10.1016/j.cemconres.2005.11.022
DOI: https://doi.org/10.1016/j.cemconres.2005.11.022
Google Scholar
De Larrard F., “Structures granulaires et formulation des bétons”, Etudes et recherches des laboratoires des ponts et chaussées, (1999), p. 591.
Google Scholar
Charonnat Y. et al., La maîtrise de l’eau dans le béton hydraulique. LCPC. Paris, 2001.
Google Scholar
Hansen T. C. and Narud H., “Recycled concrete and silica fume make calcium silicate bricks”, Cement and Concrete Research, vol. 13, no. 5, (1983), pp. 626–630. https://doi.org/10.1016/0008-8846(83)90051-0
DOI: https://doi.org/10.1016/0008-8846(83)90051-0
Google Scholar
Bairagi N. K. et al., “Behaviour of concrete with different proportions of natural and recycled aggregates”, Resources, Conservation and Recycling, vol. 9, no. 1, (1993), pp. 109–126. https://doi.org/10.1016/0921-3449(93)90036-F
DOI: https://doi.org/10.1016/0921-3449(93)90036-F
Google Scholar
Bravo M. et al., “Durability performance of concrete with recycled aggregates from construction and demolition waste plants”, Construction and Building Materials, vol. 77, (2015), pp. 357–369. https://doi.org/10.1016/j.conbuildmat.2014.12.103
DOI: https://doi.org/10.1016/j.conbuildmat.2014.12.103
Google Scholar
Moniz C. et al., “Détermination de la performance en laboratoire de matériaux recyclés utilisés en fondation routière Projet R672.1”, (2013).
Google Scholar
Bilodeau J.-P. et al., “Erosion susceptibility of granular pavement materials”, International Journal of Pavement Engineering, vol. 8, no. 1, (Mar. 2007), pp. 55–66. https://doi.org/10.1080/10298430600758980
DOI: https://doi.org/10.1080/10298430600758980
Google Scholar
Bilodeau J.-P. et al., “Optimisation de la granulométrie des matériaux granulaires de fondation des chaussées”, Canadian Journal of Civil Engineering, vol. 37, no. 10, (Oct. 2010), pp. 1350–1362. https://doi.org/10.1139/L10-083
DOI: https://doi.org/10.1139/L10-083
Google Scholar
Authors
Lynda Amel ChaabaneCivil Engineering Department; Physico-Chemistry of Advanced Materials Laboratory (LPCMA); Djillali Liabès University; Algeria
https://orcid.org/0000-0003-0740-473X
Authors
Hamza Soualhihamza_s26@yahoo.fr
Civil Engineering Department; LRGC laboratory; Amar Telidji University; Algeria
https://orcid.org/0000-0002-9284-4416
Authors
Ilies FellahCivil Engineering Department; Physico-Chemistry of Advanced Materials Laboratory (LPCMA); Djillali Liabès University; Algeria
https://orcid.org/0009-0006-9265-7019
Authors
Yassine KhalfiEnergy and Process Engineering Department; LGPME laboratory; Djillali Liabès University; Algeria
https://orcid.org/0000-0003-4303-5118
Authors
Nadia Sirine BouayedLe Havre Normandie University; France
https://orcid.org/0009-0009-2506-2965
Statistics
Abstract views: 124PDF downloads: 138
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.