Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Kruszywa pochodzące z recyklingu z placów budowy mogą wykazywać nieco gorsze właściwości w porównaniu do kruszyw naturalnych pod względem porowatości, kruchości i zmienności. Należy jednak zauważyć, że chociaż kruszywa z recyklingu są obecnie stosowane tylko w niewielkich proporcjach do produkcji betonu, ich użycie stale rośnie. Obecnie powszechnie uznaje się, że ponowne użycie kruszyw z recyklingu w zaprawach i betonie znacząco przyczynia się do ochrony kruszyw aluwialnych. Waloryzacja kruszyw z recyklingu w betonie i zaprawach oferuje wyraźną korzyść ekonomiczną w sektorze budowlanym. Rzeczywiście, ponowne użycie materiałów z rozbiórek można rozważać bezpośrednio na miejscu lub w miejscach recyklingu i przetwarzania odpadów budowlanych. Ponadto, należy zauważyć, że do tej pory nie ma specyficznej normy do pomiaru nasiąkliwości przez kruszywa z recyklingu. W odniesieniu do właściwości fizycznych, okazało się konieczne oszacowanie kinetyki absorpcji kruszyw z recyklingu. Co więcej, muszą zostać przeprowadzone inne równie ważne pomiary, aby określić wszystkie pozostałe właściwości. Uzyskane wyniki wykazały, że istnieje dobra korelacja między stopień substytucji a właściwościami fizycznymi i mechanicznymi przygotowanego betonu. Ponadto, zdecydowano się zmieniać stopień substytucji piasku naturalnego piaskiem z recyklingu podczas produkcji betonu według następujących procentów: 25% piasku z recyklingu i 75% piasku naturalnego oraz 50% piasku z recyklingu i 50% piasku naturalnego.
Abina A. et al., “Challenges and opportunities of terahertz technology in construction and demolition waste management”, Journal of Environmental Management, vol. 315, (2022), p. 115118. https://doi.org/10.1016/j.jenvman.2022.115118
DOI: https://doi.org/10.1016/j.jenvman.2022.115118
Google Scholar
Yılmaz T. et al., “Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings”, Journal of Environmental Management, vol. 222, (2018), pp. 250–259. https://doi.org/10.1016/j.jenvman.2018.05.075
DOI: https://doi.org/10.1016/j.jenvman.2018.05.075
Google Scholar
Züst S. et al., “A graph based Monte Carlo simulation supporting a digital twin for the curatorial management of excavation and demolition material flows”, Journal of Cleaner Production, vol. 310, (2021), p. 127453. https://doi.org/10.1016/j.jclepro.2021.127453
DOI: https://doi.org/10.1016/j.jclepro.2021.127453
Google Scholar
Lederer J. et al., “Raw materials consumption and demolition waste generation of the urban building sector 2016–2050: A scenario-based material flow analysis of Vienna”, Journal of Cleaner Production, vol. 288, (2021), p. 125566. https://doi.org/10.1016/j.jclepro.2020.125566
DOI: https://doi.org/10.1016/j.jclepro.2020.125566
Google Scholar
Khan A.-R. et al., “Structural behaviour and strength prediction of recycled aggregate concrete beams”, Arabian Journal for Science and Engineering, vol. 45, no. 5, (2020), pp. 3611–3622. https://doi.org/10.1007/s13369-019-04195-w
DOI: https://doi.org/10.1007/s13369-019-04195-w
Google Scholar
Tammam Y. et al., “Effect of waste filler materials and recycled waste aggregates on the production of geopolymer composites”, Arabian Journal for Science and Engineering, vol. 48, no. 4, (2023), pp. 4823–4840. https://doi.org/10.1007/s13369-022-07230-5
DOI: https://doi.org/10.1007/s13369-022-07230-5
Google Scholar
Packrisamy K. and Jayakumar K., “Effect of ceramic tile waste as a fine aggregate on compressive strength, permeability, and microstructural properties of fly ash concrete”, Arabian Journal of Geosciences, vol. 15, no. 5, (2022), p. 407. https://doi.org/10.1007/s12517-022-09731-x
DOI: https://doi.org/10.1007/s12517-022-09731-x
Google Scholar
Chaabane L. A. et al., “Study and comparative approach to materials used in ancient Egypt and the modern era”, Arabian Journal of Geosciences, vol. 15, no. 5, (2022), p. 382. https://doi.org/10.1007/s12517-022-09648-5
DOI: https://doi.org/10.1007/s12517-022-09648-5
Google Scholar
Recyc-québec, “Bilan 2002 de la gestion des matières résiduelles au Québec”, 2002.
Google Scholar
The Recycling Partnership, “Increasing Recycling Rates with EPR Policy”, (2023).
Google Scholar
Le Moigne R., L’économie circulaire : stratégie pour un monde durable / Rémy Le Moigne. Dunod. Malakoff CN - 332.82, 2018.
Google Scholar
Commission des communautés européennes, “Décision n°2000/532/CE du 03/05/00 remplaçant la décision 94/3/CE établissant une liste de déchets en application de l ’ article 1er, point a), de la directive 75/442/CEE du Conseil relative aux déchets et la décision 94/904/CE du”, 2000.
Google Scholar
Debieb F. et al., “Mechanical and durability properties of concrete using contaminated recycled aggregates”, Cement and Concrete Composites, vol. 32, no. 6, (2010), pp. 421–426. https://doi.org/10.1016/j.cemconcomp.2010.03.004
DOI: https://doi.org/10.1016/j.cemconcomp.2010.03.004
Google Scholar
Levy S. M. and Helene P., “Durability of recycled aggregates concrete: a safe way to sustainable development”, Cement and Concrete Research, vol. 34, no. 11, (2004), pp. 1975–1980. https://doi.org/10.1016/j.cemconres.2004.02.009
DOI: https://doi.org/10.1016/j.cemconres.2004.02.009
Google Scholar
Evangelista L. and de Brito J., “Durability performance of concrete made with fine recycled concrete aggregates”, Cement and Concrete Composites, vol. 32, no. 1, (2010), pp. 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005
DOI: https://doi.org/10.1016/j.cemconcomp.2009.09.005
Google Scholar
Gómez-Soberón J. M. V, “Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study”, Cement and Concrete Research, vol. 32, no. 8, (2002), pp. 1301–1311. https://doi.org/10.1016/S0008-8846(02)00795-0
DOI: https://doi.org/10.1016/S0008-8846(02)00795-0
Google Scholar
Olorunsogo F. T. and Padayachee N., “Performance of recycled aggregate concrete monitored by durability indexes”, Cement and Concrete Research, vol. 32, no. 2, (2002), pp. 179–185. https://doi.org/10.1016/S0008-8846(01)00653-6
DOI: https://doi.org/10.1016/S0008-8846(01)00653-6
Google Scholar
Abbas S. et al., “Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates”, Construction and Building Materials, vol. 132, (2017), pp. 61–70. https://doi.org/10.1016/j.conbuildmat.2016.11.126
DOI: https://doi.org/10.1016/j.conbuildmat.2016.11.126
Google Scholar
Mamery S., “Béton à base de recyclats : influence du type de recyclats et rôle de la formulation”, Université Sciences et Technologies - Bordeaux I; Université Félix Houphouët-Boigny (Abidjan, Côte d’Ivoire), 2013.
Google Scholar
Bouali E. et al., “Rheological and mechanical properties of heavy density concrete including barite powder”, Arabian Journal for Science and Engineering, vol. 45, no. 5, (2020). https://doi.org/10.1007/s13369-019-04331-6
DOI: https://doi.org/10.1007/s13369-019-04331-6
Google Scholar
Mehta P. K. and Monteiro P. J. M., Concrete: microstructure, properties, and materials, 4th ed. ed. New York: McGraw-Hill Education, 2014.
Google Scholar
Oikonomou N. D., “Recycled concrete aggregates”, Cement and Concrete Composites, vol. 27, no. 2, (2005), pp. 315–318. https://doi.org/10.1016/j.cemconcomp.2004.02.020
DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.020
Google Scholar
Sri Ravindrarajah R., “Properties of concrete made with crushed concrete as coarse aggregate”, Magazine of Concrete Research, vol. 37, no. 130, (1985), pp. 29–38. https://doi.org/10.1680/macr.1985.37.130.29
DOI: https://doi.org/10.1680/macr.1985.37.130.29
Google Scholar
Weimann K. et al., “Building materials from waste”, Materials Transactions, vol. 44, no. 7, (2003), pp. 1255–1258. https://doi.org/10.2320/matertrans.44.1255
DOI: https://doi.org/10.2320/matertrans.44.1255
Google Scholar
IREX, “PN RECYBETON, Le recyclage complet du béton”, Paris, 2011.
Google Scholar
Jemmali N., “Influence de la forme et de la rugosité des particules d’un granulat sur les propriétés et les coûts du béton compacté au rouleau”, Université de Sherbrooke, 1996.
Google Scholar
Hansen T. C. and Narud H., “Strength of recycled concrete made from crushed concrete coarse aggregate”, Concrete International, vol. 5, (1983), pp. 79–83.
Google Scholar
Topçu İ. B. and Canbaz M., “Properties of concrete containing waste glass”, Cement and Concrete Research, vol. 34, no. 2, (2004), pp. 267–274. https://doi.org/10.1016/j.cemconres.2003.07.003
DOI: https://doi.org/10.1016/j.cemconres.2003.07.003
Google Scholar
Maillard J. ., “Evaluation de l’aptitude à l’emploi des sables de fonderie Publication technique”, 1997.
Google Scholar
Rahal K., “Mechanical properties of concrete with recycled coarse aggregate”, Building and Environment, vol. 42, no. 1, (2007), pp. 407–415. https://doi.org/10.1016/j.buildenv.2005.07.033
DOI: https://doi.org/10.1016/j.buildenv.2005.07.033
Google Scholar
Navaro J., “Cinétique de mélange des enrobés recyclés et influence sur les performances mécaniques”, 2011.
Google Scholar
Sindt O., “Propriétes mécaniques de films issus de latex synthétises en présence de tensioactifs copolymérisables”, 1997.
Google Scholar
Hussain H. et al., “Valorisation des agrégats issus de bétons de démolition dans la fabrication de nouveaux bétons”, Environnement, Ingénierie & Développement, vol. N°19-3èm, (2000), pp. 17–22. https://doi.org/10.4267/dechets-sciences-techniques.439
DOI: https://doi.org/10.4267/dechets-sciences-techniques.439
Google Scholar
Etxeberria M. et al., “Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete”, Cement and Concrete Research, vol. 37, no. 5, (2007), pp. 735–742. https://doi.org/10.1016/j.cemconres.2007.02.002
DOI: https://doi.org/10.1016/j.cemconres.2007.02.002
Google Scholar
Santamaria Diaz N. K., “Valorisation des granulats recyclés dans le béton pour les pavages et trottoirs”, (2018).
Google Scholar
Bodet R., “Substitution des granulats alluvionnaires dans l ’ industrie du béton par les granulats marins , concassés ou recyclés”, Epernon, 2003.
Google Scholar
Loranger F., “Caractérisation de matériaux recyclés (bétons, enrobés et fondations granulaires) et évaluation de leur performance dans les bétons conventionnels et compactés au rouleau”, Université Laval, 2001.
Google Scholar
Marquis B. et al., “L’utilisation des matériaux recyclés dans les chaussées : caractérisation, exigences techniques et contrôle.”, Innovation Transport, no. 6, (1999).
Google Scholar
Tam V. W. Y. et al., “New approach in measuring water absorption of recycled aggregates”, Construction and Building Materials, vol. 22, no. 3, (2008), pp. 364–369. https://doi.org/10.1016/j.conbuildmat.2006.08.009
DOI: https://doi.org/10.1016/j.conbuildmat.2006.08.009
Google Scholar
Toyoki A. and Amasaki S., “Study of the stress waves in the plunger of a rebound hammer at the time of impact”, ACI Symposium Publication, vol. 82, (1984), pp. 17–34. https://doi.org/10.14359/6547
Google Scholar
Ho A. cuong, “Optimisation de la composition et caractérisation d’un béton incorporant des granulats issus du broyage de pneus usagés. : application aux éléments de grande surface.”, 2010.
Google Scholar
Tu T. Y. et al., “Properties of HPC with recycled aggregates”, Cement and Concrete Research, vol. 36, no. 5, (2006), pp. 943–950. https://doi.org/10.1016/j.cemconres.2005.11.022
DOI: https://doi.org/10.1016/j.cemconres.2005.11.022
Google Scholar
De Larrard F., “Structures granulaires et formulation des bétons”, Etudes et recherches des laboratoires des ponts et chaussées, (1999), p. 591.
Google Scholar
Charonnat Y. et al., La maîtrise de l’eau dans le béton hydraulique. LCPC. Paris, 2001.
Google Scholar
Hansen T. C. and Narud H., “Recycled concrete and silica fume make calcium silicate bricks”, Cement and Concrete Research, vol. 13, no. 5, (1983), pp. 626–630. https://doi.org/10.1016/0008-8846(83)90051-0
DOI: https://doi.org/10.1016/0008-8846(83)90051-0
Google Scholar
Bairagi N. K. et al., “Behaviour of concrete with different proportions of natural and recycled aggregates”, Resources, Conservation and Recycling, vol. 9, no. 1, (1993), pp. 109–126. https://doi.org/10.1016/0921-3449(93)90036-F
DOI: https://doi.org/10.1016/0921-3449(93)90036-F
Google Scholar
Bravo M. et al., “Durability performance of concrete with recycled aggregates from construction and demolition waste plants”, Construction and Building Materials, vol. 77, (2015), pp. 357–369. https://doi.org/10.1016/j.conbuildmat.2014.12.103
DOI: https://doi.org/10.1016/j.conbuildmat.2014.12.103
Google Scholar
Moniz C. et al., “Détermination de la performance en laboratoire de matériaux recyclés utilisés en fondation routière Projet R672.1”, (2013).
Google Scholar
Bilodeau J.-P. et al., “Erosion susceptibility of granular pavement materials”, International Journal of Pavement Engineering, vol. 8, no. 1, (Mar. 2007), pp. 55–66. https://doi.org/10.1080/10298430600758980
DOI: https://doi.org/10.1080/10298430600758980
Google Scholar
Bilodeau J.-P. et al., “Optimisation de la granulométrie des matériaux granulaires de fondation des chaussées”, Canadian Journal of Civil Engineering, vol. 37, no. 10, (Oct. 2010), pp. 1350–1362. https://doi.org/10.1139/L10-083
DOI: https://doi.org/10.1139/L10-083
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.