OPRACOWANIE TECHNOLOGII OSADZANIA I POMIARÓW ZMIĘNNOPRĄDOWYCH ULTRACIENKICH WARSTW MIEDZI

Aleksandra Wilczyńska

aleksandra.wilczynska@pollub.edu.pl
Politechnika Lubelska, Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć (Polska)
http://orcid.org/0000-0002-5630-1078

Karolina Czarnacka


Uniwersytet Przyrodniczy w Lublinie (Polska)
http://orcid.org/0000-0003-1434-734X

Andrzej Kociubiński


Politechnika Lubelska, Katedra Elektroniki i Technik Informacyjnych (Polska)
http://orcid.org/0000-0002-0377-8243

Tomasz Kołtunowicz


Politechnika Lubelska, Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć (Polska)
http://orcid.org/0000-0001-7480-4931

Abstrakt

W niniejszej pracy przedstawione zostały właściwości transportowe nieciągłych 4 nm warstw miedzi otrzymanych metodą dwuźródłowego niereaktywnego rozpylania magnetronowego w obecności argonu. Wartość rezystancji i pojemności prądu równoległego do płaszczyzny tych warstw można dostrajać niezależnie poprzez zmianę nominalnej grubości metalizacji. Przebadano wpływ częstotliwości na konduktywność otrzymanych struktur w zakresie od 4 Hz do 8 MHz. Dodatkowo, w celu porównania nieutlenionych i utlenionych warstw niektóre z nich zostały wygrzane w temperaturze 500 °C. Na podstawie otrzymanych wyników określono mechanizm przenoszenia ładunków elektrycznych, którego znajomość jest niezbędna do planowania kolejnych eksperymentów bazujących na tej metodzie napylania oraz potencjalnym doborze przyszłego zastosowania struktur. Statystyczne pomiary w temperaturze pokojowej posłużą za punkt odniesienia dla wartości konduktywności i rezystywności otrzymanych na drodze obliczeń matematycznych z pomiarów rezystancji, pojemności, kąta przesunięcia fazowego oraz tangensa strat dielektrycznych w funkcji temperatury od 20 K do 375 K, które przewidywane są w dalszej części badań nad otrzymanymi strukturami. Praca stanowi wstęp do technologii otrzymywania wielowarstwowych struktur typu metal-dielektryk.


Słowa kluczowe:

rozpylanie magnetronowe, ultra cienkie warstwy, pomiary zmiennoprądowe, pomiary konduktywności, transport ładunków, warstwy miedzi

Beck R.: Technologia krzemowa. PWN, Warszawa, 1991.
  Google Scholar

Biegański P., Dobierzewska-Mozrzymas E.: Electrical properties of discontinuous copper films. International Journal of Electronics 70, 1991, 499–504, [http://doi.org/10.1080/00207219108921300].
DOI: https://doi.org/10.1080/00207219108921300   Google Scholar

Cemin F., Lundin D.: Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering. Journal of Vacuum Science & Technology A 34(5), 2016, 051506-1–051506-7 [http://doi.org/10.1116/1.4959555].
DOI: https://doi.org/10.1116/1.4959555   Google Scholar

Chakarvarki S. K.: Track-etch membranes enabled nano-/microtechnology: A review. Radiation Measurements 44(9–10), 2009, 1085–1092, [http://doi.org/10.1016/j.radmeas.2009.10.028].
DOI: https://doi.org/10.1016/j.radmeas.2009.10.028   Google Scholar

Chebakova K. A., Dzidziguri E. L. et al.: Open AccessArticle X-ray Fluorescence Spectroscopy Features of Micro- and Nanoscale Copper and Nickel Particle Compositions, Nanomaterials 11(9), 2021, 2388, [http://doi.org/10.3390/nano11092388].
DOI: https://doi.org/10.3390/nano11092388   Google Scholar

Dingle R. B.: The electrical conducticity of thin wires. Proceeding of the Royal Society A Mathematical, Physical and Engineering Sciences, 1950, [http://doi.org/10.1098/rspa.1950.0077].
DOI: https://doi.org/10.1098/rspa.1950.0077   Google Scholar

Fedotov A., Mazanik A., Svito I., Saad A., Fedotova V., Czarnacka K., Kołtunowicz T. K.: Mechanism of Carrier Transport in Cux(SiO2)1-x Nanocomposites Manufactured by Ion-Beam Sputtering with Ar Ions, Acta Physica Polonica A 128, 2015, [http://doi.org/10.12693/APhysPolA.128.883].
DOI: https://doi.org/10.12693/APhysPolA.128.883   Google Scholar

Giroire B., Ali Ahmad M., Aubert G., Teule-Gay L., Michau D., Watkins J. J., Aymonier C., Poulon-Quintin A.: A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques, Thin Solid Films 643, 2017, 53–59, [http://doi.org/10.1016/j.tsf.2017.09.002].
DOI: https://doi.org/10.1016/j.tsf.2017.09.002   Google Scholar

Grimmet G.: Percolation, 2nd ed. Springer-Verlag, Berlin 1999, [http://doi.org/10.1007/978-3-662-03981-6].
DOI: https://doi.org/10.1007/978-3-662-03981-6   Google Scholar

Hill R. M.: Electrical conduction in discontinuous metal films. Contemporary Physics 10, 1969, 221–240, [http://doi.org/10.1080/00107516908224594].
DOI: https://doi.org/10.1080/00107516908224594   Google Scholar

Imantalab O., Fattah-alhosseini A., Keshavarz M. K., Mazaheri Y.: Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper. Journal of Materials Engineering and Performance 25, 2016, 697–703, [http://doi.org/10.1007/s11665-015-1836-z].
DOI: https://doi.org/10.1007/s11665-015-1836-z   Google Scholar

Kah-Toong Chan, Teck-Yong Tou, Bee-San Teo: Thickness dependence of the structural and electrical properties of copper films deposited by dc magnetron sputtering technique. Microelectronics Journal 37(7), 2006, 608–612, [http://doi.org/10.1016/j.mejo.2005.09.016].
DOI: https://doi.org/10.1016/j.mejo.2005.09.016   Google Scholar

Kołtunowicz T. N., Żukowski P., Czarnacka K., Bondariev V., Boiko O., Scito I. A., Fedotov A. K.: Dielectric properties of nanocomposite (Cu)x(SiO2)(100−x) produced by ion-beam sputtering. Journal of Alloys and Compounds 652, 2015, 444–449, [http://doi.org/10.1016/j.jallcom.2015.08.240].
DOI: https://doi.org/10.1016/j.jallcom.2015.08.240   Google Scholar

Lacy F.: Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors. Nanoscale Research Letters 6, 2011, 1–14, [http://doi.org/10.1186/1556-276X-6-636].
DOI: https://doi.org/10.1186/1556-276X-6-636   Google Scholar

Lim J. W., Isshiki M.: Electrical resistivity of Cu films deposited by ion beam deposition: Effects of grain size, impurities, and morphological defect. Journal of Applied Physics 99, 2006, 094909-1–094909-7, [http://doi.org/10.1063/1.2194247].
DOI: https://doi.org/10.1063/1.2194247   Google Scholar

Lin Zhang, Xu Lu, Xinyu Zhang, Li Jin, Zhou Xu, Z.-Y. Cheng: All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Composites Science and Technology 167, 2018, 285–293, [http://doi.org/10.1016/j.compscitech.2018.08.017].
DOI: https://doi.org/10.1016/j.compscitech.2018.08.017   Google Scholar

Liu H.-D., Zhao Y.-P., Ramanath G., Murarka S. P., Wang G.-C.: Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films. Thin Solid Films 384(1), 2011, 151–156, [http://doi.org/10.1016/S0040-6090(00)01818-6].
DOI: https://doi.org/10.1016/S0040-6090(00)01818-6   Google Scholar

Mech K., Kowalik R., Żabiński P.: Cu thin films deposited by DC magnetron sputtering for contact surfaces on electronic components. Archives of Metallurgy and Materials 56(4), 2011, 903–908, [http://doi.org/10.2478/v10172-011-0099-4].
DOI: https://doi.org/10.2478/v10172-011-0099-4   Google Scholar

Mott N. F., Davies E. A.: Electronic process in non-crystalline materials. Claredon Press, Oxford 1979.
  Google Scholar

Poklonskii N. A., Gorbachuk N. I.: Fundamentals of impedance Spectroscopy of composites. Belarusian State University, Minsk 2005.
  Google Scholar

Svito I., Fedotov A. K., Kołtunowicz T. N., Żukowski P., Kalinin Y., Sitnikov A., Czarnacka K., Saad A.: Hopping of electron transport in granular Cux(SiO2)1–x nanocomposite films deposited by ion-beam sputtering. Journal of Alloys and Compounds 615, 2014, S371–S374, [http://doi.org/10.1016/j.jallcom.2014.01.136].
DOI: https://doi.org/10.1016/j.jallcom.2014.01.136   Google Scholar

Yang Yu.: Deposited mono-component Cu metallic glass: a molecular dynamics study Materials Today Communications 26, 2021, 102083-1–102083-5, [http://doi.org/10.1016/j.mtcomm.2021.102083].
DOI: https://doi.org/10.1016/j.mtcomm.2021.102083   Google Scholar

Yarimbiyik A. E., Schafft H. A., Allen R. A., Vaudin M. D., Zaghloul M. E.: Experimental and simulation studies of resistivity in nanoscale copper films, Microelectronics Reliability 42(2), 2009, 127–134, [http://doi.org/10.1016/j.microrel.2008.11.003].
DOI: https://doi.org/10.1016/j.microrel.2008.11.003   Google Scholar


  Google Scholar

Zhigal'skii, G. P., Jones B. K.: The physical properties of thin metal films. Vol. 13. CRC Press, London 2003.
DOI: https://doi.org/10.1201/9780367801113   Google Scholar

Żukowski P., Kołtunowicz T. K., Partyka J., Węgierek P.: Dielectric properties and model of hopping conductivity of GaAs irradiated by H + ions, Vacuum 81(10), 2007, 1137–1140, [http://doi.org/10.1016/j.vacuum.2007.01.070].
DOI: https://doi.org/10.1016/j.vacuum.2007.01.070   Google Scholar

Żukowski P., Kołtunowicz T. N., Boiko O., Bondariev V., Czarnacka K., Fedotova J. A., Fedotov A. K., Svito I. A.: Impedance model of metal-dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)x(PZT)(100−x), Vacuum 120, 2015, 37–43, [http://doi.org/10.1016/j.vacuum.2015.04.035].
DOI: https://doi.org/10.1016/j.vacuum.2015.04.035   Google Scholar

Żukowski P., Kołtunowicz T. N., Partyka J., Fedotova Yu. A., Larkin A. V.: Hopping conductivity of metal-dielectric nanocomposites produced by means of magnetron sputtering with the application of oxygen and argon ions. Vacuum 83(3), 2009, S280–S283, [http://doi.org/10.1016/j.vacuum.2009.01.082].
DOI: https://doi.org/10.1016/j.vacuum.2009.01.082   Google Scholar


Opublikowane
2022-03-31

Cited By / Share

Wilczyńska, A., Czarnacka, K., Kociubiński, A., & Kołtunowicz, T. (2022). OPRACOWANIE TECHNOLOGII OSADZANIA I POMIARÓW ZMIĘNNOPRĄDOWYCH ULTRACIENKICH WARSTW MIEDZI. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(1), 36–39. https://doi.org/10.35784/iapgos.2888

Autorzy

Aleksandra Wilczyńska 
aleksandra.wilczynska@pollub.edu.pl
Politechnika Lubelska, Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Polska
http://orcid.org/0000-0002-5630-1078

Autorzy

Karolina Czarnacka 

Uniwersytet Przyrodniczy w Lublinie Polska
http://orcid.org/0000-0003-1434-734X

Autorzy

Andrzej Kociubiński 

Politechnika Lubelska, Katedra Elektroniki i Technik Informacyjnych Polska
http://orcid.org/0000-0002-0377-8243

Autorzy

Tomasz Kołtunowicz 

Politechnika Lubelska, Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Polska
http://orcid.org/0000-0001-7480-4931

Statystyki

Abstract views: 271
PDF downloads: 176


Inne teksty tego samego autora