FORECASTING BUSINESS PROCESSES IN THE MANAGEMENT SYSTEM OF THE CORPORATION
Svitlana A. Yaremko
s.yaremko@vtei.edu.uaVinnitsa Institute of Trade and Economics State University of Trade and Economics (Ukraine)
http://orcid.org/0000-0002-0605-9324
Elena M. Kuzmina
Vinnitsa Institute of Trade and Economics State University of Trade and Economics (Ukraine)
http://orcid.org/0000-0002-0061-9933
Nataliia B. Savina
National University of Water and Environmental Engineering (Ukraine)
http://orcid.org/0000-0001-8339-1219
Iryna Yu. Yepifanova
Vinnytsia National Technical Uneversity (Ukraine)
http://orcid.org/0000-0002-0391-9026
Halyna B. Gordiichuk
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University (Ukraine)
http://orcid.org/0000-0001-6400-5300
Dinara Mussayeva
Institute of Economics CS MES RK (Kazakhstan)
http://orcid.org/0000-0002-8349-213X
Abstract
One of the key issues in corporate management is business process management. That is why the greatest interest for company analysts is the issue of effective forecasting of business processes. In today's digitalization of the economy, integration and automation of business processes have become the main priorities for achieving efficiency and effectiveness of companies, and especially for effective management decisions. This problem can be solved with the help of integrated systems, which are tools for effective management decisions, modeling and optimization of business processes. The article provides an analytical review of known forecasting methods and identifies the features of their application, analyzes the advantages and disadvantages that will take them into account in modeling the company and promote economic development, competitiveness and optimize business processes.
Keywords:
corporation, management, forecasting, business process, integrated system, making effective management decisionsReferences
Azarova A.: Information Technologies and Neural Network Means for Building the Complex Goal Program “Improving the Management of Intellectual Capital”. Lecture Notes on Data Engineering and Communications Technologies 77, 2022, 534–547.
DOI: https://doi.org/10.1007/978-3-030-82014-5_36
Google Scholar
Azarova A., Zhytkevych O.: Mathematical methods of identification of ukrainian enterprises competitiveness level by fuzzy logic using. Economic Annals-XXI 9–10(2), 2013, 59–62.
Google Scholar
Azarova A.O. et al.: Information technologies for assessing the quality of IT-specialties graduates' training of university by means of fuzzy logic and neural networks. International Journal of Electronics and Telecommunications, 66(3), 2020, 411–416.
Google Scholar
Berk J. et al.: Fundamentals of Corporate Finance, Global Edition. Pearson Available, 2022.
Google Scholar
Box G. et al.: Time Series Analysis: Forecasting and Control. Wiley, 2015.
Google Scholar
Brealey R. et al.: ISE Fundamentals of Corporate Finance. Irwin McGraw-Hill Publishing Co. Ltd., 2022.
Google Scholar
Brigham E., Houston J.: Fundamentals of Financial Management. Learning EMEA, 2021.
Google Scholar
Bruskin S. N. et al.: Business performance management models based on the digital corporation’s paradigm. European Research Studies Journal. EU. 20(4A), 2017, 264–274.
DOI: https://doi.org/10.35808/ersj/833
Google Scholar
Clayman M. et al.: Corporate Finance: A Practical Approach. Wiley, 2012.
Google Scholar
Ehrhardt M. et al.: Financial Management EMEA: Theory and Practice. Cengage Learning EMEA, 2019.
Google Scholar
Evans M. K.: Practical Business Forecasting. Wiley, 2008.
Google Scholar
Garg P.K.: Forecasting Management: Futurism on Management. Global India Publications, 2009.
Google Scholar
Hanke J. E., Wichern D. W., Reitsch A. G.: Business Forecasting. Prentice Hall, 2001.
Google Scholar
Ihnatyeva I. A., Harafonova O. I.: Korporatyvne upravlinnya: Pidruchnyk. Tsentr uchbovoyi literatury, Kyiv 2013.
Google Scholar
Kuzmina E. et al.: Methods and techniques for evaluating effectiveness of information technology implementation into business processes. Proc. of SPIE. 10808, 2018, 108081N.
Google Scholar
Lawrence K. D. et al.: Advances in Business and Management Forecasting. Emerald Publishing Ltd., 2018.
Google Scholar
Makridakis S. et al.: Forecasting methods and applications. Wiley India Pvt. Ltd., 2008.
Google Scholar
Melicher R. et al.: Introduction to Finance: Markets, Investments, and Financial Management. Wiley, 2013.
Google Scholar
Mescon M. H. et al.: The Fundamentals of Management. Williams, 2019.
Google Scholar
Mittelhammer R. C.: Mathematical Statistics for Economics and Business. Springer, 2013.
DOI: https://doi.org/10.1007/978-1-4614-5022-1
Google Scholar
Mostenska T. L. et al.: Korporatyvne upravlinnya. Karavela, Kyiv 2015.
Google Scholar
Shyian A. A. et al.: Modeling communication between the public and the authorities while implementing innovative projects in the context of e-democracy and public administration. Science and Inn. 16(6), 2021, 18–27.
DOI: https://doi.org/10.15407/scine16.06.018
Google Scholar
Shmueli G. et al.: Data Mining for Business Analytics: Concepts, Techniques, and Applications in R. Wiley, 2017.
Google Scholar
Vandeput N.: Data Science for Supply Chain Forecasting. Business & Economics, 2021.
DOI: https://doi.org/10.1515/9783110671124
Google Scholar
Van Horne J. et al.: Fundamentals of financial management. Pearson Ed. Ltd., 2009.
Google Scholar
Voynarenko M. P. et al.: Managing the development of innovation business processes with automated information systems. Marketing and innovation management 4, 2017, 133–148.
DOI: https://doi.org/10.21272/mmi.2017.4-12
Google Scholar
Wade D. et al.: Corporate Performance Management. Routledge, 2001.
DOI: https://doi.org/10.1016/B978-0-87719-386-9.50005-7
Google Scholar
Westerfield R. et al.: Fundamentals of Corporate Finance. Irwin McGraw-Hill Publishing Co. Ltd., 2019.
Google Scholar
Wilson H. et al.: Business Forecasting with Forecastx. McGraw-Hill Ed. 2009.
Google Scholar
Yaremko S. A. et al.: Intelligent system in the context of business process modeling. International Journal of Electronics and Telecommunications 67(2), 2021, 163–168.
Google Scholar
Yaremko S. et al.: Using artificial intelligence technologies for forecasting business processes. Computer-integrated technologies: education, science, production 23, 2021, 230–234.
DOI: https://doi.org/10.36910/6775-2524-0560-2021-43-38
Google Scholar
Yarmolenko V. et al.: Practice Analysis of Effectiveness Components for the System Functioning Process: Energy Aspect, Lecture Notes on Data Engineering and Communications Technologies 77, 2022, 282–296.
DOI: https://doi.org/10.1007/978-3-030-82014-5_19
Google Scholar
Zanda G.: Corporate Management in a Knowledge-Based Economy. Palgrave MacMillan, 2012.
DOI: https://doi.org/10.1057/9780230355453
Google Scholar
Authors
Svitlana A. Yaremkos.yaremko@vtei.edu.ua
Vinnitsa Institute of Trade and Economics State University of Trade and Economics Ukraine
http://orcid.org/0000-0002-0605-9324
Authors
Elena M. KuzminaVinnitsa Institute of Trade and Economics State University of Trade and Economics Ukraine
http://orcid.org/0000-0002-0061-9933
Authors
Nataliia B. SavinaNational University of Water and Environmental Engineering Ukraine
http://orcid.org/0000-0001-8339-1219
Authors
Iryna Yu. YepifanovaVinnytsia National Technical Uneversity Ukraine
http://orcid.org/0000-0002-0391-9026
Authors
Halyna B. GordiichukVinnytsia Mykhailo Kotsiubynskyi State Pedagogical University Ukraine
http://orcid.org/0000-0001-6400-5300
Authors
Dinara MussayevaInstitute of Economics CS MES RK Kazakhstan
http://orcid.org/0000-0002-8349-213X
Statistics
Abstract views: 4710PDF downloads: 326
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Mariia A. Voronenko, Ulzhalgas M. Zhunissova, Saule S. Smailova, Luidmila N. Lytvynenko, Nataliia B. Savina, Pavlo P. Mulesa, Volodymyr I. Lytvynenko, USING BAYESIAN METHODS IN THE TASK OF MODELING THE PATIENTS' PHARMACORESISTANCE DEVELOPMENT , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Petro Loboda, Ivan Starovit, Oleksii Shushura, Yevhen Havrylko, Maxim Saveliev, Natalia Sachaniuk-Kavets’ka, Oleksandr Neprytskyi, Dina Oralbekova, Dinara Mussayeva, VENTILATION CONTROL OF THE NEW SAFE CONFINEMENT OF THE CHORNOBYL NUCLEAR POWER PLANT BASED ON NEURO-FUZZY NETWORKS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 4 (2023)
- Anna Vitiuk, Leonid Polishchuk, Nataliia B. Savina, Oksana O. Adler, Gulzhan Kashaganova, Saule Kumargazhanova, ENGINEERING AND TECHNICAL ASSESSMENT OF THE COMPETITIVENESS OF UKRAINIAN MECHANICAL ENGINEERING ENTERPRISES BASED ON THE APPLICATION OF REGRESSION MODELS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)
- Vira Petruk, Olena Prozor, Yuliia Sabadosh, Iryna Baranovska, Maksim Palii, Yevheniia Moroz, Saule Kumargazhanova, Dinara Mussayeva, STATISTICAL METHODS FOR EVALUATING EXPERIMENTAL DATA ON THE USE OF MATHEMATICAL COMPETENCIES IN STUDY FOR A RESILIENT ECONOMY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)
- Iryna Prychepa, Oksana Adler, Liliia Ruda, Olexander Lesko, Zlata Bondarenko, Lee Yanan, Dinara Mussayeva, INFORMATION MODEL OF THE ASSESSMENT OF TOURISM SECTOR COMPETITIVENESS IN THE CONTEXT OF EUROPEAN INTEGRATION POLICY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)
- Oleksandr Harnaha, Nataliia B. Savina, Volodymyr Hrytsiuk, ENVIRONMENTAL AND ECONOMIC ASSESSMENT OF THE LAND USE REGULATION EFFECTIVENESS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 4 (2023)