INFORMATION TECHNOLOGIES FOR THE ANALYSIS OF THE STRUCTURAL CHANGES IN THE PROCESS OF IDIOPATHIC MACULAR RUPTURE DIAGNOSTICS


Abstract

Process of eye tomogram obtaining by means of optical coherent tomography is studied.Stages of idiopathic macula holes formation in the process of eye grounds diagnostics are considered. Main stages of retina pathology progression are determined: Fuzzy logic units for obtaining reliable conclusions regarding the result of diagnosis are developed. By the results of theoretical and practical research  system and technique of retinal macular region of the eye state analysis.


Keywords

tomogram; optical coherent tomography; macular area; fuzzy logic; membership function; idiopathic macular break

Alamouti B., Funk J.: Retinal thickness decreases with age: an OCT study. Br. J. Ophthalmol. 87/2003, 899.

Alamouti B., Funk J.: Retinal thickness decreases with age: an OCT study. Br. J. Ophthalmol. 87/2003, 899.

Bagga H., Greenfield D.S., Knighton R.W.: Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease. Invest. Ophthalmol. Vis. Sci. 44/2003, 1969–1976.

Bagga Н., Greenfield D.S., Feuer W., Knighton R.W.: Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Am. J. Ophthalmol. 135/2003, 521–529.

Bowd C., Zangwill L.M., Weinreb R.N.: Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes. Arch. Ophthalmol. 121/2003, 961–966.

Bowd С., Zangwill L.M., Medeiros F.A., et al.: Confocal scanning laser ophthalmoscopy classiliers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest. Ophthalmol. Vis. Sci. 45/2004, 2255–2262.

Greenfield D.S., Knighton R.W., Feuer W.J., Schiffman J.C.: Normative retardation data corrected lor the corneal polarization axis with scanning laser polarimetry. Ophthalmic. Surg. Lasers. Imaging. 34/2003, 165–171.

Gurses-Ozden R., Hon H., Ishikawa S.TLiebmann., J.M.: Increasing sampling density improves reproducibility of optical coherence tomography measurements. J. Glaucoma 8/1999, 238–241.

Jones A.L., Sheen N.J., North R.V., et al.: The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study ol the normal human retinal nerve fibre layer. Br. J. Ophthalmol. 85/2001, 673.

Pavlov S.V., et al.: Methods of processing biomedical image of retinal macular region of the eye, Proc. SPIE 9961, Reflection, Scattering, and Diffraction from Surfaces V, 99610X (September 26, 2016); [DOI:10.1117/12.2237154].

Pavlov S.V., et al.: Tele-detection system for the automatic sensing of the state of the cardiovascular functions in situ. Information Technology in Medical Diagnostics II. CRC Press Balkema book, London 2019, 289–296.

Pavlov S.V., Martianova T.A., Saldan Y.R., et al.: Methods and computer tools for identifying diabetes-induced fundus pathology. Information Technology in Medical Diagnostics II. CRC Press, Balkema book, London 2019, 87–99.

Romanyuk O.N., et al.: Method of anti-aliasing with the use of the new pixel model, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 981617 (December 18, 2015), [DOI:10.1117/12.2229013].

Romanyuk S.O.: New method to control color intensity for antialiasing. Control and Communications (SIBCON), 2015 International Siberian Conference. 21-23 May 2015. [DOI: 10.1109/SIBCON.2015.7147194].

Saldan Y.R., et al.: Efficiency of optical-electronic systems: methods application for the analysis of structural changes in the process of eye grounds diagnosis. Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104450S, [DOI: 10.1117/12.2280977].

Sergey I., et al.: Offsetting and blending with perturbation functions. Proc. SPIE 11045, Optical Fibers and Their Applications 2018, 110450W, 2019 [DOI: 10.1117/12.2522353].

Timchenko L.I., et al.: Bio-inspired approach to multistage image processing. Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104453M, [DOI: 10.1117/12.2280976].

Timchenko L.I., et al.: Precision measurement of coordinates of power center of extended laser path images. Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080810 [DOI: 10.1117/12.2501628].

Vyatkin S.I., et al.: Offsetting and blending with perturbation functions. Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108082Y, [DOI: 10.1117/12.2501694].

Vyatkin S.I., et al.: A GPU-based multi-volume rendering for medicine. Proc. SPIE 11045, Optical Fibers and Their Applications 2018, 1104513, 2019 [DOI 10.1117/12.2522408].

Vyatkin S.I., et al.: Using lights in a volume-oriented rendering. Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104450U, [DOI: 10.1117/12.2280982].

Weinreb R.N., Bowd C., Greenfield D.S., Zangwill L.M.: Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry. Arch. Ophthalmol. 120/2002, 901–906.

Zhou Q., Weinreb R.N.: Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest. Ophthalmol. Vis. Sci. 43/2002, 2221–2228.

Download

Published : 2019-06-21


Pavlov, S., Saldan, Y., Vovkotrub-Lyahovska, D., Saldan, Y., Vassilenko, V., & Yakusheva, Y. (2019). INFORMATION TECHNOLOGIES FOR THE ANALYSIS OF THE STRUCTURAL CHANGES IN THE PROCESS OF IDIOPATHIC MACULAR RUPTURE DIAGNOSTICS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(2), 54-59. https://doi.org/10.5604/01.3001.0013.2549

Sergii Pavlov  psv@vntu.edu.ua
Vinnitsa National Technical University  Ukraine
http://orcid.org/0000-0002-0051-5560
Yosyp Saldan 
Vinnitsa Pirogov National Medical University  Ukraine
http://orcid.org/0000-0002-3925-9197
Dina Vovkotrub-Lyahovska 
Vinnitsa National Technical University  Ukraine
http://orcid.org/0000-0001-6793-5407
Yuliia Saldan 
Vinnitsa Pirogov National Medical University  Ukraine
http://orcid.org/0000-0001-7420-598X
Valentina Vassilenko 
Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia  Portugal
http://orcid.org/0000-0002-7913-7047
Yuliia Yakusheva 
Vinnitsa Pirogov National Medical University  Ukraine
http://orcid.org/0000-0002-4811-8089