INFORMATION TECHNOLOGIES FOR THE ANALYSIS OF THE STRUCTURAL CHANGES IN THE PROCESS OF IDIOPATHIC MACULAR RUPTURE DIAGNOSTICS

Sergii Pavlov

psv@vntu.edu.ua
Vinnitsa National Technical University (Ukraine)
http://orcid.org/0000-0002-0051-5560

Yosyp Saldan


Vinnitsa Pirogov National Medical University (Ukraine)
http://orcid.org/0000-0002-3925-9197

Dina Vovkotrub-Lyahovska


Vinnitsa National Technical University (Ukraine)
http://orcid.org/0000-0001-6793-5407

Yuliia Saldan


Vinnitsa Pirogov National Medical University (Ukraine)
http://orcid.org/0000-0001-7420-598X

Valentina Vassilenko


Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia (Portugal)
http://orcid.org/0000-0002-7913-7047

Yuliia Yakusheva


Vinnitsa Pirogov National Medical University (Ukraine)
http://orcid.org/0000-0002-4811-8089

Abstract

Process of eye tomogram obtaining by means of optical coherent tomography is studied.Stages of idiopathic macula holes formation in the process of eye grounds diagnostics are considered. Main stages of retina pathology progression are determined: Fuzzy logic units for obtaining reliable conclusions regarding the result of diagnosis are developed. By the results of theoretical and practical research  system and technique of retinal macular region of the eye state analysis.


Keywords:

tomogram, optical coherent tomography, macular area, fuzzy logic, membership function, idiopathic macular break

Alamouti B., Funk J.: Retinal thickness decreases with age: an OCT study. Br. J. Ophthalmol. 87/2003, 899.
  Google Scholar

Alamouti B., Funk J.: Retinal thickness decreases with age: an OCT study. Br. J. Ophthalmol. 87/2003, 899.
  Google Scholar

Bagga H., Greenfield D.S., Knighton R.W.: Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease. Invest. Ophthalmol. Vis. Sci. 44/2003, 1969–1976.
  Google Scholar

Bagga Н., Greenfield D.S., Feuer W., Knighton R.W.: Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Am. J. Ophthalmol. 135/2003, 521–529.
  Google Scholar

Bowd C., Zangwill L.M., Weinreb R.N.: Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes. Arch. Ophthalmol. 121/2003, 961–966.
  Google Scholar

Bowd С., Zangwill L.M., Medeiros F.A., et al.: Confocal scanning laser ophthalmoscopy classiliers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest. Ophthalmol. Vis. Sci. 45/2004, 2255–2262.
  Google Scholar

Greenfield D.S., Knighton R.W., Feuer W.J., Schiffman J.C.: Normative retardation data corrected lor the corneal polarization axis with scanning laser polarimetry. Ophthalmic. Surg. Lasers. Imaging. 34/2003, 165–171.
  Google Scholar

Gurses-Ozden R., Hon H., Ishikawa S.TLiebmann., J.M.: Increasing sampling density improves reproducibility of optical coherence tomography measurements. J. Glaucoma 8/1999, 238–241.
  Google Scholar

Jones A.L., Sheen N.J., North R.V., et al.: The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study ol the normal human retinal nerve fibre layer. Br. J. Ophthalmol. 85/2001, 673.
  Google Scholar

Pavlov S.V., et al.: Methods of processing biomedical image of retinal macular region of the eye, Proc. SPIE 9961, Reflection, Scattering, and Diffraction from Surfaces V, 99610X (September 26, 2016); [DOI:10.1117/12.2237154].
  Google Scholar

Pavlov S.V., et al.: Tele-detection system for the automatic sensing of the state of the cardiovascular functions in situ. Information Technology in Medical Diagnostics II. CRC Press Balkema book, London 2019, 289–296.
  Google Scholar

Pavlov S.V., Martianova T.A., Saldan Y.R., et al.: Methods and computer tools for identifying diabetes-induced fundus pathology. Information Technology in Medical Diagnostics II. CRC Press, Balkema book, London 2019, 87–99.
  Google Scholar

Romanyuk O.N., et al.: Method of anti-aliasing with the use of the new pixel model, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 981617 (December 18, 2015), [DOI:10.1117/12.2229013].
  Google Scholar

Romanyuk S.O.: New method to control color intensity for antialiasing. Control and Communications (SIBCON), 2015 International Siberian Conference. 21-23 May 2015. [DOI: 10.1109/SIBCON.2015.7147194].
  Google Scholar

Saldan Y.R., et al.: Efficiency of optical-electronic systems: methods application for the analysis of structural changes in the process of eye grounds diagnosis. Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104450S, [DOI: 10.1117/12.2280977].
  Google Scholar

Sergey I., et al.: Offsetting and blending with perturbation functions. Proc. SPIE 11045, Optical Fibers and Their Applications 2018, 110450W, 2019 [DOI: 10.1117/12.2522353].
  Google Scholar

Timchenko L.I., et al.: Bio-inspired approach to multistage image processing. Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104453M, [DOI: 10.1117/12.2280976].
  Google Scholar

Timchenko L.I., et al.: Precision measurement of coordinates of power center of extended laser path images. Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080810 [DOI: 10.1117/12.2501628].
  Google Scholar

Vyatkin S.I., et al.: Offsetting and blending with perturbation functions. Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108082Y, [DOI: 10.1117/12.2501694].
  Google Scholar

Vyatkin S.I., et al.: A GPU-based multi-volume rendering for medicine. Proc. SPIE 11045, Optical Fibers and Their Applications 2018, 1104513, 2019 [DOI 10.1117/12.2522408].
  Google Scholar

Vyatkin S.I., et al.: Using lights in a volume-oriented rendering. Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104450U, [DOI: 10.1117/12.2280982].
  Google Scholar

Weinreb R.N., Bowd C., Greenfield D.S., Zangwill L.M.: Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry. Arch. Ophthalmol. 120/2002, 901–906.
  Google Scholar

Zhou Q., Weinreb R.N.: Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest. Ophthalmol. Vis. Sci. 43/2002, 2221–2228.
  Google Scholar

Download


Published
2019-06-21

Cited by

Pavlov, S., Saldan, Y., Vovkotrub-Lyahovska, D., Saldan, Y., Vassilenko, V., & Yakusheva, Y. (2019). INFORMATION TECHNOLOGIES FOR THE ANALYSIS OF THE STRUCTURAL CHANGES IN THE PROCESS OF IDIOPATHIC MACULAR RUPTURE DIAGNOSTICS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(2), 54–59. https://doi.org/10.5604/01.3001.0013.2549

Authors

Sergii Pavlov 
psv@vntu.edu.ua
Vinnitsa National Technical University Ukraine
http://orcid.org/0000-0002-0051-5560

Authors

Yosyp Saldan 

Vinnitsa Pirogov National Medical University Ukraine
http://orcid.org/0000-0002-3925-9197

Authors

Dina Vovkotrub-Lyahovska 

Vinnitsa National Technical University Ukraine
http://orcid.org/0000-0001-6793-5407

Authors

Yuliia Saldan 

Vinnitsa Pirogov National Medical University Ukraine
http://orcid.org/0000-0001-7420-598X

Authors

Valentina Vassilenko 

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Portugal
http://orcid.org/0000-0002-7913-7047

Authors

Yuliia Yakusheva 

Vinnitsa Pirogov National Medical University Ukraine
http://orcid.org/0000-0002-4811-8089

Statistics

Abstract views: 262
PDF downloads: 137


Most read articles by the same author(s)