Technologies for multichannel electrophysiology are experiencing astounding growth. Numbers of channels reach thousands of recording sites, systems are often combined with electrostimulations and optic stimulations. However, the task of design the cheap, flexible system for freely behaving animals without tethered cable are not solved completely. We propose the system for multichannel electrophysiology for both rats and mice. The system allows to record unit activity and local field potential (LFP) up to 32 channels with different types of electrodes. The system was constructed using Intan technologies RHD 2132 chip. Data acquisition and recordings take place on the DAQ-card, which is placed as a back-pack on the animal. The signal is amplified with amplifier cascade and digitalized with 16-bit ADC. Instrumental filters allow to filter the signal in 0.1–20000 Hz bandwidth. The system is powered from the mini-battery with capacity 340 mA/hr. The system was validated with generated signals, in anaesthetized rat and showed a high quality of recordings.


multichannel electrophysiology; freely behaving rodents; unit activity; local field potential

Al_Omari A. K., Saied H. F. I., Avrunin O. G.: Analysis of Changes of the Hydraulic Diameter and Determination of the Air Flow Modes in the Nasal Cavity. Image Processing and Communications Challenges 3. Springer, Berlin, Heidelberg 2011, [DOI: 10.1007/978-3-642-23154-4_34]. DOI:

Alam M., Chen X., Fernandez E.: A low-cost multichannel wireless neural stimulation system for freely roaming animals. Journal of neural engineering 10(6), 2013, 066010. DOI:

Bennett C. et al.: Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102(2), 2019, 477–492. DOI:

Erickson J. C. et al.: Intsy: a low-cost, open-source, wireless multi-channel bioamplifier system. Physiological measurement 39(3), 2018, 035008. DOI:

Fan D., Rich D., Holtzman T., Ruther P., Dalley J. W., Lopez A., et al.: A wireless multi-channel recording system for freely behaving mice and rats. PLoS ONE 6(7), 2011, e22033, [DOI: 10.1371/journal.pone.0022033]. DOI:

Fyrmpas G. et al.: The value of bilateral simultaneous nasal spirometry in the assessment of patients undergoing septoplasty. Rhinology 49(3), 2011, 297–303.

Ghomashchi A. et al.: A low-cost, open-source, wireless electrophysiology system. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014. DOI:

Juavinett A. L., Bekheet G., Churchland A. K.: Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8, 2019, e47188. DOI:

Kinney J. P. et al.: A direct-to-drive neural data acquisition system. Frontiers in neural circuits 9, 2015, 46, [DOI: 10.3389/fncir.2015.00046]. DOI:

Laxpati N. G. et al.: Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter. Frontiers in neuroengineering 7, 2014, 40. DOI:

Liang B., Ye X.: Towards high-density recording of brain-wide neural activity. Science China Materials 61, 2018, 432–434, [DOI: 10.1007/s40843-017-9175-3]. DOI:

Moroz V. M. et al.: Coupled Spike Activity in Micropopulations of Motor Cortex Neurons in Rats. Neurophysiology 42(2), 2010, 110–117. DOI:

Newman J. P. et al.: Closed-loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform. Frontiers in neural circuits 6, 2013, 98. DOI:

Nosova Ya. V., Faruk K. I., Avrunin O. G.: A tool for researching respiratory and olfaction disorders. Telecommunications and Radio Engineering 77(15), 2018, 1389–1395. DOI:

Rolston J. D., Gross R. E., Potter S. M.: NeuroRighter: closed-loop multielectrode stimulation and recording for freely moving animals and cell cultures. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. DOI:

Rotermund D. et al.: Open hardware: Towards a fully-wireless sub-cranial neuro-implant for measuring electrocorticography signals. BioRxiv 036855, 2017. DOI:

Siegle J. H. et al.: Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology. Current opinion in neurobiology 32, 2015, 53–59. DOI:

Siegle J. H. et al.: Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. Journal of neural engineering 14(4), 2017, 045003. DOI:

Sikes R. S., Gannon W. L.: Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 92(1), 2011, 235–253. DOI:

Spivey R. J., Bishop Ch. M.: An implantable instrument for studying the long-term flight biology of migratory birds. Review of Scientific Instruments 85(1), 2014, 014301. DOI:

Steinmetz N. A. et al.: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current opinion in neurobiology 50, 2018, 92–100. DOI:

Steinmetz N. et al.: Dataset: simultaneous recording with two Neuropixels Phase3 electrode arrays. CortexLab at UCL, 2016.

Vlasenko O. et al.: Multichannel system for recording myocardial electrical activity. Information Technology in Medical Diagnostics II: Proceedings of the International Scientific Internet Conference “Computer Graphics and Image Processing" and the XLVIIIth International Scientific and Practical Conference “Application of Lasers in Medicine and Biology". CRC Press, 2019.

Vyssotski A. L. et al.: Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. Journal of neurophysiology 95(2), 2006, 1263–1273. DOI:

Wagenaar D., DeMarse T. B., Potter S. M.: MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.

Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. CRC Press, London 2019, [DOI: 10.1201/9780429057618]. DOI:

Woods V. et al.: A low-cost, 61-channel µECoG array for use in rodents. 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015. DOI:

Yüzgeç Ö. et al.: Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Current Biology 28(3), 2018, 392–400. DOI:

RHD2000 Series Digital Electrophysiology Interface Chips RHD2116, RHD2132. Intan Technologies, LLC.


Published : 2019-12-15

Chaikovska, O., Ponomarenko, O., Dovgan, O., Rokunets, I., Pavlov, S., Kryvoviaz, O., & Vlasenko, O. (2019). CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 64-68.

Olga Chaikovska 
National Pirogov Memorial Medical University  Ukraine
Oleksandr Ponomarenko 
National Pirogov Memorial Medical University  Ukraine
Olexandr Dovgan 
National Pirogov Memorial Medical University  Ukraine
Igor Rokunets 
National Pirogov Memorial Medical University  Ukraine
Sergii Pavlov
Vinnytsia National Technical University  Ukraine
Olena Kryvoviaz 
National Pirogov Memorial Medical University  Ukraine
Oleg Vlasenko 
National Pirogov Memorial Medical University  Ukraine