CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS
Article Sidebar
Open full text
Issue Vol. 9 No. 4 (2019)
-
CONCEPT OF A SELF-LEARNING WORKPLACE CELL FOR WORKER ASSISTANCE WHILE COLLABORATION WITH A ROBOT WITHIN THE SELF-ADAPTING-PRODUCTION-PLANNING-SYSTEM
Johanna Ender, Jan Cetric Wagner, Georg Kunert, Fang Bin Guo, Roland Larek, Thorsten Pawletta4-9
-
DATA-BASED PREDICTION OF SOOT EMISSIONS FOR TRANSIENT ENGINE OPERATION
Michele Schaub10-13
-
APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION
Piotr Wójcicki, Tomasz Zientarski14-17
-
APPLICATION OF ARTIFICIAL NEURAL NETWORK IN THE PROCESS OF SELECTION OF ORGANIC COATINGS
Artur Popko, Konrad Gauda18-21
-
APPLICATION OF OPTICAL PROFILOMETRY IN THE ANALYSIS OF THE DESTRUCTION PROCESS OF RENOVATION ORGANIC COATINGS FOR THE AUTOMOTIVE INDUSTRY
Konrad Gauda, Kamil Pasierbiewicz22-25
-
ANALYSIS OF DATA FROM MEASURING SENSORS FOR PREDICTION IN PRODUCTION PROCESS CONTROL SYSTEMS
Tomasz Rymarczyk, Bartek Przysucha, Marcin Kowalski, Piotr Bednarczuk26-29
-
MEASUREMENT OF TWO-PHASE GAS-LIQUID FLOW USING STANDARD AND SLOTTED ORIFICE
Barbara Tomaszewska-Wach, Mariusz R. Rząsa, Marcin Majer30-33
-
DETERMINATION OF YOUNG’S DYNAMIC MODULUS OF POLYMER MATERIALS BY RESONANCE VIBRATING-REED METHOD
Volodymyr Mashchenko, Valentine Krivtsov, Volodymyr Kvasnikov, Volodymyr Drevetskiy34-37
-
DETERMINATION OF THE OPTIMAL SCANNING STEP FOR EVALUATION OF IMAGE RECONSTRUCTION QUALITY IN MAGNETOACOUSTIC TOMOGRAPHY WITH MAGNETIC INDUCTION
Adam Ryszard Zywica, Marcin Ziolkowski38-42
-
CONSTRUCTION OF AN ULTRASONIC TOMOGRAPH FOR ANALYSIS OF TECHNOLOGICAL PROCESSES IN THE FIELD OF REFLECTION AND TRANSMISSION WAVES
Tomasz Rymarczyk, Michał Gołąbek, Piotr Lesiak, Andrzej Marciniak, Mirosław Guzik43-47
-
A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Tomasz Rymarczyk, Krzysztof Polakowski, Jan Sikora48-51
-
EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR
Jacek Kryszyn, Damian Wanta, Waldemar T. Smolik52-59
-
USING 3D PRINTING TECHNOLOGY TO FULL-SCALE SIMULATION OF THE UPPER RESPIRATORY TRACT
Oleg Avrunin, Yana Nosova, Ibrahim Younouss Abdelhamid, Oleksandr Gryshkov, Birgit Glasmacher60-63
-
CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS
Olga Chaikovska, Oleksandr Ponomarenko, Olexandr Dovgan, Igor Rokunets, Sergii Pavlov, Olena Kryvoviaz, Oleg Vlasenko64-68
-
ATRIAL FIBRILLATION DETECTION ON ELECTROCARDIOGRAMS WITH CONVOLUTIONAL NEURAL NETWORKS
Viktor Kifer, Natalia Zagorodna, Olena Hevko69-73
-
THE CONCEPT OF A FLYING ELECTROMAGNETIC FIELD MEASURING PLATFORM
Sławomir Szymaniec, Sławomir Szymocha, Łukasz Miszuda74-77
-
LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM
Andrzej Nowrot, Monika Mikołajczyk, Anna Manowska, Joachim Pielot, Antoni Wojaczek78-82
-
IMPROVING THE DYNAMICS OF AN INVERTER-BASED PV GENERATOR DURING LOAD DUMPS
Łukasz Kwaśny83-86
-
MEASUREMENT SYSTEMS FOR THE ENERGY PRODUCED BY THE PHOTOVOLTAIC SYSTEM AND CONSUMED BY THE BUILDING OF THE LUBLIN SCIENCE AND TECHNOLOGY PARK
Arkadiusz Małek87-92
-
DESIGN, CONSTRUCTION AND AUTOMATIC CONTROL SYSTEM OF SINGLE-STAGE SIX-BED ADSORPTION HEAT PUMP
Katarzyna Zwarycz-Makles, Sławomir Jaszczak93-98
Archives
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
Main Article Content
DOI
Authors
Abstract
Technologies for multichannel electrophysiology are experiencing astounding growth. Numbers of channels reach thousands of recording sites, systems are often combined with electrostimulations and optic stimulations. However, the task of design the cheap, flexible system for freely behaving animals without tethered cable are not solved completely. We propose the system for multichannel electrophysiology for both rats and mice. The system allows to record unit activity and local field potential (LFP) up to 32 channels with different types of electrodes. The system was constructed using Intan technologies RHD 2132 chip. Data acquisition and recordings take place on the DAQ-card, which is placed as a back-pack on the animal. The signal is amplified with amplifier cascade and digitalized with 16-bit ADC. Instrumental filters allow to filter the signal in 0.1–20000 Hz bandwidth. The system is powered from the mini-battery with capacity 340 mA/hr. The system was validated with generated signals, in anaesthetized rat and showed a high quality of recordings.
Keywords:
References
Al_Omari A. K., Saied H. F. I., Avrunin O. G.: Analysis of Changes of the Hydraulic Diameter and Determination of the Air Flow Modes in the Nasal Cavity. Image Processing and Communications Challenges 3. Springer, Berlin, Heidelberg 2011, [DOI: 10.1007/978-3-642-23154-4_34]. DOI: https://doi.org/10.1007/978-3-642-23154-4_34
Alam M., Chen X., Fernandez E.: A low-cost multichannel wireless neural stimulation system for freely roaming animals. Journal of neural engineering 10(6), 2013, 066010. DOI: https://doi.org/10.1088/1741-2560/10/6/066010
Bennett C. et al.: Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102(2), 2019, 477–492. DOI: https://doi.org/10.1016/j.neuron.2019.02.010
Erickson J. C. et al.: Intsy: a low-cost, open-source, wireless multi-channel bioamplifier system. Physiological measurement 39(3), 2018, 035008. DOI: https://doi.org/10.1088/1361-6579/aaad51
Fan D., Rich D., Holtzman T., Ruther P., Dalley J. W., Lopez A., et al.: A wireless multi-channel recording system for freely behaving mice and rats. PLoS ONE 6(7), 2011, e22033, [DOI: 10.1371/journal.pone.0022033]. DOI: https://doi.org/10.1371/journal.pone.0022033
Fyrmpas G. et al.: The value of bilateral simultaneous nasal spirometry in the assessment of patients undergoing septoplasty. Rhinology 49(3), 2011, 297–303.
Ghomashchi A. et al.: A low-cost, open-source, wireless electrophysiology system. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014. DOI: https://doi.org/10.1109/EMBC.2014.6944288
Juavinett A. L., Bekheet G., Churchland A. K.: Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8, 2019, e47188. DOI: https://doi.org/10.7554/eLife.47188
Kinney J. P. et al.: A direct-to-drive neural data acquisition system. Frontiers in neural circuits 9, 2015, 46, [DOI: 10.3389/fncir.2015.00046]. DOI: https://doi.org/10.3389/fncir.2015.00046
Laxpati N. G. et al.: Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter. Frontiers in neuroengineering 7, 2014, 40. DOI: https://doi.org/10.3389/fneng.2014.00040
Liang B., Ye X.: Towards high-density recording of brain-wide neural activity. Science China Materials 61, 2018, 432–434, [DOI: 10.1007/s40843-017-9175-3]. DOI: https://doi.org/10.1007/s40843-017-9175-3
Moroz V. M. et al.: Coupled Spike Activity in Micropopulations of Motor Cortex Neurons in Rats. Neurophysiology 42(2), 2010, 110–117. DOI: https://doi.org/10.1007/s11062-010-9138-4
Newman J. P. et al.: Closed-loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform. Frontiers in neural circuits 6, 2013, 98. DOI: https://doi.org/10.3389/fncir.2012.00098
Nosova Ya. V., Faruk K. I., Avrunin O. G.: A tool for researching respiratory and olfaction disorders. Telecommunications and Radio Engineering 77(15), 2018, 1389–1395. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i15.90
Rolston J. D., Gross R. E., Potter S. M.: NeuroRighter: closed-loop multielectrode stimulation and recording for freely moving animals and cell cultures. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. DOI: https://doi.org/10.1109/IEMBS.2009.5333589
Rotermund D. et al.: Open hardware: Towards a fully-wireless sub-cranial neuro-implant for measuring electrocorticography signals. BioRxiv 036855, 2017. DOI: https://doi.org/10.1101/036855
Siegle J. H. et al.: Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology. Current opinion in neurobiology 32, 2015, 53–59. DOI: https://doi.org/10.1016/j.conb.2014.11.004
Siegle J. H. et al.: Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. Journal of neural engineering 14(4), 2017, 045003. DOI: https://doi.org/10.1088/1741-2552/aa5eea
Sikes R. S., Gannon W. L.: Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 92(1), 2011, 235–253. DOI: https://doi.org/10.1644/10-MAMM-F-355.1
Spivey R. J., Bishop Ch. M.: An implantable instrument for studying the long-term flight biology of migratory birds. Review of Scientific Instruments 85(1), 2014, 014301. DOI: https://doi.org/10.1063/1.4854635
Steinmetz N. A. et al.: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current opinion in neurobiology 50, 2018, 92–100. DOI: https://doi.org/10.1016/j.conb.2018.01.009
Steinmetz N. et al.: Dataset: simultaneous recording with two Neuropixels Phase3 electrode arrays. CortexLab at UCL, 2016.
Vlasenko O. et al.: Multichannel system for recording myocardial electrical activity. Information Technology in Medical Diagnostics II: Proceedings of the International Scientific Internet Conference “Computer Graphics and Image Processing" and the XLVIIIth International Scientific and Practical Conference “Application of Lasers in Medicine and Biology". CRC Press, 2019.
Vyssotski A. L. et al.: Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. Journal of neurophysiology 95(2), 2006, 1263–1273. DOI: https://doi.org/10.1152/jn.00879.2005
Wagenaar D., DeMarse T. B., Potter S. M.: MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.
Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. CRC Press, London 2019, [DOI: 10.1201/9780429057618]. DOI: https://doi.org/10.1201/9780429057618
Woods V. et al.: A low-cost, 61-channel µECoG array for use in rodents. 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015. DOI: https://doi.org/10.1109/NER.2015.7146687
Yüzgeç Ö. et al.: Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Current Biology 28(3), 2018, 392–400. DOI: https://doi.org/10.1016/j.cub.2017.12.049
RHD2000 Series Digital Electrophysiology Interface Chips RHD2116, RHD2132. Intan Technologies, LLC. http://intantech.com/files/Intan_RHD2000_series_datasheet.pdf
Article Details
Abstract views: 576
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
