MEDICAL FUZZY-EXPERT SYSTEM FOR PREDICTION OF ENGRAFTMENT DEGREE OF DENTAL IMPLANTS IN PATIENTS WITH CHRONIC LIVER DISEASE

Vitaliy Polishchuk


National Pirogov Memorial Medical University (Ukraine)
https://orcid.org/0000-0001-7180-3650

Sergii Pavlov

psv@vntu.edu.ua
Vinnitsia National Technical University (Ukraine)
https://orcid.org/0000-0002-0051-5560

Sergii Polishchuk


National Pirogov Memorial Medical University (Ukraine)
https://orcid.org/0000-0002-8635-9932

Sergii Shuvalov


National Pirogov Memorial Medical University (Ukraine)
https://orcid.org/0000-0001-5052-680X

Andriy Dalishchuk


National Pirogov Memorial Medical University (Ukraine)
https://orcid.org/0000-0002-5090-6172

Natalia Sachaniuk-Kavets’ka


Vinnytsia National Technical University (Ukraine)
https://orcid.org/0000-0001-6405-1331

Kuralay Mukhsina


Institute of Information and Computing Technologies of the CS MES RK (Kazakhstan)
https://orcid.org/0000-0002-8627-1949

Abilkaiyr Nazerke


Al-Farabi Kazakh National University (Kazakhstan)
https://orcid.org/0000-0003-1603-5577

Abstract

The paper presents an information technology for assessing the degree of engraftment of dental implants in the event of a pathology violation through the use of fuzzy sets, which allows using this method for medical diagnostic tasks. Main scientific results: developed algorithms and mathematical models that formalize the process supporting diagnostic decisions based on fuzzy logic; developed mathematical models of membership functions that formalize the presentation of qualitative and qualitative informational features based on the rules of fuzzy logic, which can be used in information expert systems when assessing the degree of engraftment of dental implants in case of disease with pathological diseases.


Keywords:

medical expert systems, fuzzy logic, patient safety, dental implants, chronic liver pathology

Abdelhay N., Prasad S., Gibson M. P.: Guided versus non-guided dental implant placement: a systematic review and meta-analysis. BDJ Open. 7(1), 2021, 31.
  Google Scholar

Arunyanak S. P. et al.: The effect of factors related to periodontal status toward peri-implantitis. Clin Oral Implants Res. 30(8), 2019, 791–799.
  Google Scholar

Atieh M. A. et al.: Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development. Cochrane Database of Systematic Reviews 4, 2021, CD010176.
  Google Scholar

Bertolini M. M. et al.: Does traumatic occlusal forces lead to peri-implant bone loss? A systematic review. Braz Oral Res. 33(suppl 1), 2019, e069.
  Google Scholar

Clinical guidelines for the management of pulpal diseases, approved by Decree 15 of the Council of Public Association: Russian Dental Association. 2018.
  Google Scholar

Demkovich A. E., Yakymchuk M. M., Sverstyuk A. S.: Etiological risk factors for the occurrence of peri-implantitis. Clinical dentistry 2(31), 2020, 62–69.
  Google Scholar

Guo Y. et al.: Influence of marginal bone resorption on two mini implant-retained mandibular overdenture: An in vitro study. J Adv Prosthodont. 13(1), 2021, 55–64.
  Google Scholar

Katelyan O. V. et al.: Study of the peripheral blood circulation of an abdominal wall using optoelectronic plethysmograph. W.Wojcik et al. (eds): Information Technology in Medical Diagnostics II. CRC Press, Balkema book, Taylor & Francis Group, London, UK, 2019, 119–125.
  Google Scholar

Kozlovska T. I. et al.: Device to determine the level of peripheral blood circulation and saturation. Proc. SPIE 10031, 2016, 100312Z.
  Google Scholar

Nizhynska-Astapenko Z. et al.: Information medical fuzzy-expert systemfor the assessment of the diabetic ketoacidosis severity on the base of the blood gases indices. Proc. SPIE 12126, 2021.
  Google Scholar

Pavlov S. V. et al.: Analysis of microcirculatory disorders in inflammatory processes in the maxillofacial region on based of optoelectronic methods. Przeglad Elektrotechniczny 93(5), 2017, 114–117.
  Google Scholar

Pavlov S. V. et al.: Electro-optical system for the automated selection of dental implants according to their colour matching. Przeglad Elektrotechniczny 93(3), 2017, 121–124.
  Google Scholar

Pelekhan B. L., Rozhko M. M.: Bone tissue resorption around intraosseous dental implants in patients with mandible edentulousness. Stomatological Bulletin 121(4), 2023, 55–62.
  Google Scholar

Pelekhan B. et al.: Analytical Modeling of the Interaction of a Four Implant-Supported Overdenture with Bone Tissue. Materials 15(7), 2022, 2398.
  Google Scholar

Polishchuk S. S., Skyba V. Ya., Davydenko I. S.: Histological changes of bone tissue in the perforation defect site of the rat mandibule when using hepatoprotector in odstructive hepatitis. World of medicine and biology 16(72), 2020, 193–198.
  Google Scholar

Polishchuk V. S., Polishchuk S. S.: Peculiarities of the course after the operative course of patients after dental implantation on the background of the pathology of the hepatobilier system. Stomatological Bulletin 120(3), 2022, 51–56.
  Google Scholar

Rotshtein A.: Design and Tuning of Fussy IF –THEN Vuly for Medical Didicol Diagnosis. H.-N.L Teodorescu, et al. (eds): Fuzzy and Neuro-Fuzzy Systems in Medicine. CRC-Press, 1998, 235–295.
  Google Scholar

Sidor O. V.: The strategy for planning surgical stage dental implantation. Stomatological Bulletin 118(1), 2022, 50–55.
  Google Scholar

Semenov Ye. I. et al.: Comparative characteristics of dental defects and the volume of implantological care in the young population of Ukraine. Stomatological Bulletin 119(2), 2022, 60–65.
  Google Scholar

Serkova V. K. et al.: Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules. Proc. SPIE 10445, 2017, 104453O.
  Google Scholar

Shkilniak L. et al.: Expert fuzzy systems for evaluation of intensity of reactive edema of soft tissues in patients with diabetes. Informtyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS, 2022, 3, 59–63.
  Google Scholar

Taubayev G. et al.: Machine learning algorithms and classificationof textures. Journal of Theoretical and Applied Information Technologythis 98(23), 2020, 3854–3866.
  Google Scholar

Ushenko Yu. A., Sidor M. I., Bodnar G. B.: Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer. Quanrum Electron. 44(8), 2014, 785–790.
  Google Scholar

Ushenko V. A., Gavrylyak M. S.: Azimuthally invariant Mueller-matrix mapping of biological tissue in differential diagnosis of mechanisms protein molecules networks anisotropy. Proc. SPIE 8812, 2016, 88120Y.
  Google Scholar

Vasilevskyi O. et al.: Method of evaluating thelevel of confidence basedon metrological risks for determining the coverage factorin the concept of uncertainty. Proc. SPIE. 10808, 2018, 108082C.
  Google Scholar

Vassilenko V. et al.: Automated features analysis of patients with spinal diseases using medical thermal images. Proc. SPIE 11456, 2020, 114560L.
  Google Scholar

Wójcik W. et al. (eds): Information Technology in Medical Diagnostics. CRC Press, 2017.
  Google Scholar

Wójcik W. et al. (eds): Information Technology in Medical Diagnostics II. Taylor & Francis Group. CRC Press, Balkema Book, London, 2019.
  Google Scholar

Wójcik W. et al.: Medical Fuzzy-Expert System for Assessment of the Degree of Anatomical Lesion of Coronary Arteries. Int. J. Environ. Res. Public Health 20(2), 2023, 979 [https://doi.org/10.3390/ijerph20020979].
  Google Scholar

Zabolotna N. I. et al.: Diagnostics of pathologically changed birefringent networks by means of phase Mueller matrix tomography. Proc. SPIE 8698, 2013, 86980C.
  Google Scholar

Zabolotna N. I. et al.: System of polarization phasometry of polycrystalline blood plasma networks in mammary gland pathology diagnostics. Proc. SPIE 9613, 2015, 961311.
  Google Scholar

Download


Published
2024-03-31

Cited by

Polishchuk, V., Pavlov, S., Polishchuk, S., Shuvalov, S., Dalishchuk, A., Sachaniuk-Kavets’ka, N., … Nazerke, A. (2024). MEDICAL FUZZY-EXPERT SYSTEM FOR PREDICTION OF ENGRAFTMENT DEGREE OF DENTAL IMPLANTS IN PATIENTS WITH CHRONIC LIVER DISEASE . Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(1), 90–94. https://doi.org/10.35784/iapgos.5585

Authors

Vitaliy Polishchuk 

National Pirogov Memorial Medical University Ukraine
https://orcid.org/0000-0001-7180-3650

Authors

Sergii Pavlov 
psv@vntu.edu.ua
Vinnitsia National Technical University Ukraine
https://orcid.org/0000-0002-0051-5560

Authors

Sergii Polishchuk 

National Pirogov Memorial Medical University Ukraine
https://orcid.org/0000-0002-8635-9932

Authors

Sergii Shuvalov 

National Pirogov Memorial Medical University Ukraine
https://orcid.org/0000-0001-5052-680X

Authors

Andriy Dalishchuk 

National Pirogov Memorial Medical University Ukraine
https://orcid.org/0000-0002-5090-6172

Authors

Natalia Sachaniuk-Kavets’ka 

Vinnytsia National Technical University Ukraine
https://orcid.org/0000-0001-6405-1331

Authors

Kuralay Mukhsina 

Institute of Information and Computing Technologies of the CS MES RK Kazakhstan
https://orcid.org/0000-0002-8627-1949

Authors

Abilkaiyr Nazerke 

Al-Farabi Kazakh National University Kazakhstan
https://orcid.org/0000-0003-1603-5577

Statistics

Abstract views: 212
PDF downloads: 158


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

1 2 > >>