ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY
Marcin Topczak
m.topczak@wp.plInstitute of Mechanical Engineering, University of Zielona Góra (Poland)
https://orcid.org/0000-0003-2277-144X
Małgorzata Śliwa
(Poland)
https://orcid.org/0000-0001-6453-5758
Abstract
The changes caused by Industry 4.0 determine the decisions taken by manufacturing companies. Their activities are aimed at adapting processes and products to dynamic market requirements. Additive manufacturing technologies (AM) are the answer to the needs of enterprises. The implementation of AM technology brings many benefits, although for most 3D printing techniques it is also relatively expensive. Therefore, the implementation process should be preceded by an appropriate analysis, in order, finally, to assess the solution. This article presents the concept of using the Bayesian network when planning the implementation of AM technology. The use of the presented model allows the level of the success of the implementation of selected AM technology, to be estimated under given environmental conditions.
Keywords:
additive manufacturing, Bayesian network, Petri nets, process modellingReferences
Aguilera, P. A., Fernandez, A., Fernandez, R., Rumi, R., & Salmeron, A. (2011). Bayesian networks in environmental modelling. Environmental Modelling & Software, 26(12), 1376–1388. https://doi.org/10.1016/j.envsoft.2011.06.004
DOI: https://doi.org/10.1016/j.envsoft.2011.06.004
Google Scholar
Ahmed, N. (2019). Direct metal fabrication in rapid prototyping: A review. Journal of Manufacturing Processes, 42, 167-191. https://doi.org/10.1016/j.jmapro.2019.05.001
DOI: https://doi.org/10.1016/j.jmapro.2019.05.001
Google Scholar
Biedermann, A., & Taroni, F. (2006). Bayesian networks and probabilistic reasoning about scientific evidence when there is a lack of data. Forensic Science International, 157(2–3), 163–167. https://doi.org/10.1016/j.forsciint.2005.09.008
DOI: https://doi.org/10.1016/j.forsciint.2005.09.008
Google Scholar
Cassandras, C. G., & Lafoyonglirtune, S. (2008). Introduction to Discrete Event Systems. Springer-Verlag.
DOI: https://doi.org/10.1007/978-0-387-68612-7
Google Scholar
Constantinou, A. C., Fenton, N., & Neil, M. (2016). Integrating expert knowledge with data in Bayesian networks: Preserving data-driven expectations when the expert variables remain unobserved. Expert Systems With Applications, 56, 197–208. https://doi.org/10.1016/j.eswa.2016.02.050
DOI: https://doi.org/10.1016/j.eswa.2016.02.050
Google Scholar
Daemi, T., Ebrahimi, A., & Fotuhi-Firuzabad, M. (2012). Constructing the Bayesian network for components reliability importance ranking in composite power systems. Int. J. Electr. Power Energy Syst., 43(1), 474–480. https://doi.org/10.1016/j.ijepes.2012.06.010
DOI: https://doi.org/10.1016/j.ijepes.2012.06.010
Google Scholar
Dahire, S., Tahir, F., Jiao, Y., & Liu, Y. (2018). Bayesian Network inference for probabilistic strength estimation of aging pipeline systems. Int. J. Press. Vessels Pip., 162, 30–39. https://doi.org/10.1016/j.ijpvp.2018.01.004
DOI: https://doi.org/10.1016/j.ijpvp.2018.01.004
Google Scholar
Fenton, N. E., & Neil, M. (2014). Decision Support Software for Probabilistic Risk Assessment Using Bayesian Networks. IEEE Software, 31(2), 21–26. http://dx.doi.org/10.1109/MS.2014.32
DOI: https://doi.org/10.1109/MS.2014.32
Google Scholar
Fierro, L. H., Cano, R. E., & García, J. I. (2020). Modelling of a multi-agent supply chain management system using Colored Petri Nets. Procedia Manufacturing, 42, 288–295. https://doi.org/10.1016/j.promfg.2020.02.095
DOI: https://doi.org/10.1016/j.promfg.2020.02.095
Google Scholar
Gao, Y., Xu, L., Zhao, Y., You, Z., & Guan, Q. (2020). 3D printing preview for stereo-lithography based on photopolymerization kinetic models. Bioactive Materials, 5(4), 798–807. https://doi.org/10.1016/j.bioactmat.2020.05.006
DOI: https://doi.org/10.1016/j.bioactmat.2020.05.006
Google Scholar
Giebas, D., & Wojszczyk, R. (2018). Graphical representations of multithreaded applications. Applied Computer Science, 14(2), 20–37. https://doi.org/10.23743/acs-2018-10
Google Scholar
Goole, J., & Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm., 499, 376–394. https://doi.org/10.1016/j.ijpharm.2015.12.071
DOI: https://doi.org/10.1016/j.ijpharm.2015.12.071
Google Scholar
Gran, B. A., & Helminen, A. (2001). A Bayesian Belief Network for Reliability Assessment. In: U. Voges (Eds.), Computer Safety, Reliability and Security. SAFECOMP 2001. Lecture Notes in Computer Science (vol. 2187). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45416-0_4
DOI: https://doi.org/10.1007/3-540-45416-0_4
Google Scholar
Kabir, S., & Papadopoulos, Y. (2019). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science, 115, 154–175. https://doi.org/10.1016/j.ssci.2019.02.009
DOI: https://doi.org/10.1016/j.ssci.2019.02.009
Google Scholar
Karayuz, I., & Bidyuk, P. (2015). Forecasting GDP growth rate in Ukraine with alternative models. Applied Computer Science, 11(3), 88–97.
Google Scholar
Lacheheub, M. N., Hameurlain, N., & Maamri, R. (2020). Resources consumption analysis of business process services in cloud computing using Petri Net. Journal of King Saud University – Computer and Information Sciences, 32(4), 408–418. https://doi.org/10.1016/j.jksuci.2019.08.005
DOI: https://doi.org/10.1016/j.jksuci.2019.08.005
Google Scholar
Liu, H. C, You, J. X., Li, Z. W., & Tian, G. (2017). Fuzzy Petri nets for knowledge representation and reasoning: A literature review. Engineering Applications of Artificial Intelligence, 60, 45–56. https://doi.org/10.1016/j.engappai.2017.01.012
DOI: https://doi.org/10.1016/j.engappai.2017.01.012
Google Scholar
Liu, H. C., Lin, Q. L., Mao, L. X., & Zhang, Z. Y. (2013). Dynamic adaptive fuzzy Petri nets for knowledge representation and reasoning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43, 1399–1410. https://doi.org/10.1109/TSMC.2013.2256125
DOI: https://doi.org/10.1109/TSMC.2013.2256125
Google Scholar
Louazani, A., & Sekhri, L. (2020). Time Petri Nets based model for CL-MAC protocol with packet loss. Journal of King Saud University – Computer and Information Sciences, 32(4), 522–528. https://doi.org/10.1016/j.jksuci.2019.09.011
DOI: https://doi.org/10.1016/j.jksuci.2019.09.011
Google Scholar
Mansour, M. M., Wahab, M. A. A., & Soliman, W. M. (2013). Petri nets for fault diagnosis of large power generation station. Ain Shams Engineering Journal, 4(4), 831–842. https://doi.org/10.1016/j.asej.2013.04.006
DOI: https://doi.org/10.1016/j.asej.2013.04.006
Google Scholar
Nagarajan, B., Hu, Z., Song, X., Zhai, W., & Wei, J. (2019). Development of Micro Selective Laser Melting: The State
Google Scholar
of the Art and Future Perspectives. Engineering, 5(4), 702–720. https://doi.org/10.1016/j.eng.2019.07.002
DOI: https://doi.org/10.1016/j.eng.2019.07.002
Google Scholar
Nasiri, S., Khosravani, M. R., & Weinberg, K. (2017). Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Engineering Failure Analysis, 81, 270–293. https://doi.org/10.1016/j.engfailanal.2017.07.011
DOI: https://doi.org/10.1016/j.engfailanal.2017.07.011
Google Scholar
Patalas-Maliszewska, J., & Krebs, I. (2015). Decision model for the use of the application for knowledge transfer support in manufacturing enterprises. In: W. Abramowicz (Eds.), Business Information Systems Workshops. BIS 2015. Lecture Notes in Business Information Processing (vol. 228). Springer, Cham. https://doi.org/10.1007/978-3-319-26762-3_5
DOI: https://doi.org/10.1007/978-3-319-26762-3_5
Google Scholar
Patalas-Maliszewska, J. (2012). Assessing the Impact of ERP Implementation in the Small Enterprises. Foundations of Management, 4(2), 51062. https://doi.org/10.2478/fman-2013-0010
DOI: https://doi.org/10.2478/fman-2013-0010
Google Scholar
Patalas-Maliszewska, J., Feldshtein, E., Devojno, O., Śliwa, M., Kardapolava, M., & Lutsko, N. (2020). Single Tracks as a Key Factor in Additive Manufacturing Technology-Analysis of Research Trends and Metal Deposition Behaviour. Materials, 13(5), 1115. https://doi.org/10.3390/ma13051115.
DOI: https://doi.org/10.3390/ma13051115
Google Scholar
Patalas-Maliszewska, J., Topczak, M., &, Kłos, S. (2020). The Level of the Additive Manufacturing Technology Use in Polish Metal and Automotive Manufacturing Enterprises. Applied Science, 10(3), 735. https://doi.org/10.3390/app10030735
DOI: https://doi.org/10.3390/app10030735
Google Scholar
Penaranda, X., Moralejo, S., Lamikiz, A., & Figueras, J. (2017). An adaptive laser cladding methodology for blade tip repair. The International Journal of Advanced Manufacturing Technology, 92, 4337–4343. https://doi.org/10.1007/s00170-017-0500-1
DOI: https://doi.org/10.1007/s00170-017-0500-1
Google Scholar
Ramírez-Noriega, A., Juárez-Ramírez, R., & Martínez-Ramírez, Y. (2017). Evaluation module based on Bayesian networks to Intelligent Tutoring Systems. Int. J. Inf. Manag., 37(1), 1488–1498. https://doi.org/10.1016/j.ijinfomgt.2016.05.007
DOI: https://doi.org/10.1016/j.ijinfomgt.2016.05.007
Google Scholar
Rebello, S., Yu, H., & Ma, L. (2019). An integrated approach for real-time hazard mitigation in complex industrial processes. Reliability Engineering & System Safety, 188, 297–309. https://doi.org/10.1016/j.ress.2019.03.037
DOI: https://doi.org/10.1016/j.ress.2019.03.037
Google Scholar
Rosário, C. R., Kipper, L. M., Frozza, R., & Mariani, B. B. (2015). Modeling of tacit knowledge in industry: Simulations on the variables of industrial processes. Expert Systems with Applications, 42(3), 1613–1625. https://doi.org/10.1016/j.eswa.2014.09.023
DOI: https://doi.org/10.1016/j.eswa.2014.09.023
Google Scholar
Shin, J., Kim, S., & Lee, J. M. (2015). Production and inventory control of auto parts based on predicted probabilistic distribution of inventory. Digital Communications and Networks, 1(4), 292–301. https://doi.org/10.1016/j.dcan.2015.10.002
DOI: https://doi.org/10.1016/j.dcan.2015.10.002
Google Scholar
Wieleba, R. (2011). Knowledge Engineering in the expert systems. Sci. Notebooks Warsaw Univ. Inf. Technol., 5, 195–216.
Google Scholar
Yanrong, H., & Yang, S. X. (2004). A knowledge based genetic algorithm for path planning of a mobile robot. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. (vol. 5, pp. 4350–4355). https://doi.org/10.1109/ROBOT.2004.1302402
DOI: https://doi.org/10.1109/ROBOT.2004.1302402
Google Scholar
Yongli, Z., Limin, H., Liguo, Z., & Yan, W. (2008). Bayesian network based time-sequence simulation for power system reliability assessment. Seventh Mexican International Conference on Artificial Intelligence (pp. 271–277). IEEE.
DOI: https://doi.org/10.1109/MICAI.2008.35
Google Scholar
Authors
Marcin Topczakm.topczak@wp.pl
Institute of Mechanical Engineering, University of Zielona Góra Poland
https://orcid.org/0000-0003-2277-144X
Statistics
Abstract views: 352PDF downloads: 16
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Małgorzata ŚLIWA, Ewelina KOSICKA, A MODEL OF KNOWLEDGE ACQUISITION IN THE MAINTENANCE DEPARTMENT OF A PRODUCTION COMPANY , Applied Computer Science: Vol. 13 No. 3 (2017)
Similar Articles
- Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI, NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT , Applied Computer Science: Vol. 19 No. 3 (2023)
- Paweł BAŁON, Edward REJMAN, Robert SMUSZ, Janusz SZOSTAK, Bartłomiej KIEŁBASA, HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES , Applied Computer Science: Vol. 14 No. 2 (2018)
- Paweł KARPIŃSKI, THE INFLUENCE OF THE INJECTION TIMING ON THE PERFORMANCE OF TWO-STROKE OPPOSED-PISTON DIESEL ENGINE , Applied Computer Science: Vol. 14 No. 2 (2018)
- Pornsiri KHUMLA, Kamthorn SARAWAN, IMPROVING MATERIAL REQUIREMENTS PLANNING THROUGH WEB-BASED: A CASE STUDY THAILAND SMEs , Applied Computer Science: Vol. 19 No. 4 (2023)
- Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Damian GIEBAS, Rafał WOJSZCZYK, ORDER VIOLATION IN MULTITHREADED APPLICATIONS AND ITS DETECTION IN STATIC CODE ANALYSIS PROCESS , Applied Computer Science: Vol. 16 No. 4 (2020)
- Bartosz CIEŚLA, Grzegorz GUNIA, DEVELOPMENT OF INTEGRATED MANAGEMENT INFORMATION SYSTEMS IN THE CONTEXT OF INDUSTRY 4.0 , Applied Computer Science: Vol. 15 No. 4 (2019)
- Agnieszka ZACHCIAŁ, Andrzej JARDZIOCH, APPLICATION OF SIMULATION RESEARCH TO ANALYSE THE PRODUCTION PROCESS IN TERMS OF SUSTAINABLE DEVELOPMENT , Applied Computer Science: Vol. 18 No. 3 (2022)
- Marcin BADUROWICZ, DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS , Applied Computer Science: Vol. 18 No. 1 (2022)
- Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti, CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK , Applied Computer Science: Vol. 19 No. 2 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.