IDENTIFICATION OF THE MASS INERTIA MOMENT IN AN ELECTROMECHANICAL SYSTEM BASED ON WAVELET–NEURAL METHOD

Marcin TOMCZYK

tomczykmarcin@poczta.fm
Electrical School No. 1 in Krakow, Kamieńskiego 49, 30-644 Kraków (Poland)

Barbara BOROWIK


Cracow University of Technology, Warszawska 24, 31-155 Kraków (Poland)

Bohdan BOROWIK


The University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biała (Poland)

Abstract

This paper presents the results of testing of a complex electromechanical system model. These results have been obtained for accepted in simulations the method of identifying an inertia moment of reduced masses on shaft of induction motor drive during the changes of a backlash zone width. The effectiveness of correct diagnostic conclusions enables coefficients analysis of testing signals wavelet expansion as well as weights of a supervised learning neural network. The earlier fault detection of five important state variables, which describe physical quantities of chosen complex electromechanical system has been verified for its correctness during the backlash zone width monitoring in the early stage of its gradual rise. The proposed here algorithm with mass inertia moment changes has proved to be an effective diagnostic method in the area of system changeable dynamic conditions and this has been shown in the resulting changes of backlash zone width.


Keywords:

induction motor, wavelet transformation, backlash zone, neural networks

Doniec, R. (2010). Wykorzystanie metod sztucznej inteligencji do regulacji poziomu insuliny w organizmie człowieka (doctoral dissertation). Wydawnictwo Politechniki Śląskiej, Gliwice.
  Google Scholar

Duda, J. T. (2007). Pozyskiwanie wzorców diagnostycznych w komputerowych analizach sprawności urządzeń. In J. Korbicz, K. Patan, & M. Kowal (Eds.), Diagnostyka procesów i systemów (pp. 1–16). Warszawa: Akademicka Oficyna Wydawnicza EXIT.
  Google Scholar

Farronato, L., Monti A., Ponci, F., Ferrero, A., Cristaldi, L., & Lazzaroni, M. (2005). Virtual system Fault Models for Training Fuzzy-Wavelet Identifiers in Electrical Drive Diagnosis: an Experimental Validation. In IMTC 2005 Proceedings of the IEEE. Instrumentation and Measurement Technology Conference (pp. 2310–2315). Ottawa: IEEE. https://doi.org/10.1109/IMTC.2005.1604589
DOI: https://doi.org/10.1109/IMTC.2005.1604589   Google Scholar

Ishkova, I., & Vitek, O. (2016). Detection and Classification of faults in induction motor by means of motor current signature analysis and stray flux monitoring. Przegląd Elektrotechniczny, 92(4), 166–170. https://doi.org/10.15199/48.2016.04.36
DOI: https://doi.org/10.15199/48.2016.04.36   Google Scholar

Korbicz, J. (2002). Diagnostyka procesów. Modele. Metody sztucznej inteligencji. Zastosowania. Warszawa: WNT.
  Google Scholar

Kowalski, Cz. (2006). Zastosowanie analizy falkowej w diagnostyce silników indukcyjnych. Przegląd Elektrotechniczny, 82(1), 21–26.
  Google Scholar

Rusiecki, A. (2007). Algorytmy uczenia sieci neuronowych odporne na błędy w danych (doctoral dissertation). Politechnika Wrocławska, Wrocław.
  Google Scholar

Wolkiewicz, M., & Kowalski, Cz. (2015). Diagnostyka uszkodzeń uzwojeń stojana silnika indukcyjnego z wykorzystaniem dyskretnej transformaty falkowej obwiedni prądu stojana. Maszyny elektryczne: zeszyty problemowe, 3(107), 13–18.
  Google Scholar

Yayakumar, K., Thangavel, S., & Elango, M. K. (2015). Backpropagation Algorithm for Bearing Fault Detection of Induction Motor Drive Using Wavelet Packet Decomposition. International Journal of Applied Engineering Research, 10(10), 26191–26208.
  Google Scholar

Download


Published
2018-06-30

Cited by

TOMCZYK, M., BOROWIK, B., & BOROWIK, B. (2018). IDENTIFICATION OF THE MASS INERTIA MOMENT IN AN ELECTROMECHANICAL SYSTEM BASED ON WAVELET–NEURAL METHOD. Applied Computer Science, 14(2), 96–111. https://doi.org/10.23743/acs-2018-16

Authors

Marcin TOMCZYK 
tomczykmarcin@poczta.fm
Electrical School No. 1 in Krakow, Kamieńskiego 49, 30-644 Kraków Poland

Authors

Barbara BOROWIK 

Cracow University of Technology, Warszawska 24, 31-155 Kraków Poland

Authors

Bohdan BOROWIK 

The University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biała Poland

Statistics

Abstract views: 94
PDF downloads: 45


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.