BOVW FOR CLASSIFICATION IN GEOMETRICS SHAPES

Baldemar ZURITA

baldemar.zurita@gmail.com
Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala (Mexico)

Luís LUNA


Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala (Mexico)

José HERNÁNDEZ


* Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala (Mexico)

Federico RAMÍREZ


Apizaco Technological Institute, Departament of Computer and Systems, Apizaco, Tlaxcala (Mexico)

Abstract

The classification of forms is a process used in various areas, to perform a classification based on the manipulation of shape contours it is necessary to extract certain common characteristics, it is proposed to use the bag of visual words model, this method consists of three phases: detection and extraction of characteristics, representation of the image and finally the classification. In the first phase of detection and extraction the SIFT and SURF methods will be used, later in the second phase a dictionary of words will be created through a process of clustering using K-means, EM, K-means in combination with EM, finally in the Classification will be compared algorithms of SVM, Bayes, KNN, RF, DT, AdaBoost, NN, to determine the performance and accuracy of the proposed method.


Keywords:

BOVW, classification, codebook

Ben Hamza, A. (2016). A graph-theoretic approach to 3D shape classification. Neurocomputing, 211, 11–21.
DOI: https://doi.org/10.1016/j.neucom.2015.12.130   Google Scholar

Jia, Q., Fan, X., Liu, Y., Li, H., Luo, Z., & Guo, H. (2016). Hierarchical projective invariant contexts for shape recognition. Pattern Recognition, 52, 358–374. https://doi.org/10.1016/J.PATCOG. 2015.11.003
DOI: https://doi.org/10.1016/j.patcog.2015.11.003   Google Scholar

Li, C., & Ben Hamza, A. (2014). Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey. Multimedia Systems, 20(3), 253–281. https://doi.org/10.1007/s00530-013-0318-0
DOI: https://doi.org/10.1007/s00530-013-0318-0   Google Scholar

Shaban, A., Rabiee, H., Farajtabar, M., & Ghazvininejad M. (2013). From local similarity to global coding; an application to image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (pp. 2794–2801). Portland, USA: IEEE.
DOI: https://doi.org/10.1109/CVPR.2013.360   Google Scholar

Sivic, J., & Zisserman, A. (2003). Video Google: a text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision – Volume 2 (pp. 1–9). USA: IEEE Computer Society Washington.
DOI: https://doi.org/10.1109/ICCV.2003.1238663   Google Scholar

Szelinski, R. (2011). Computer Vision: Algorithms and Applications (pp. 658–729). Springer Verlag.
  Google Scholar

Wang, X., Feng, B., Bai, X., Liu, W., & Latecki, L. J. (2014). Bag of contour fragments for robust shape classification. Pattern Recognition, 47(6), 2116–2125.
DOI: https://doi.org/10.1016/j.patcog.2013.12.008   Google Scholar

Ye, J., & Yu, Y. (2016). A fast modal space transform for robust nonrigid shape retrieval. The Visual Computer, 32(5), 553–568. https://doi.org/10.1007/s00371-015-1071-5
DOI: https://doi.org/10.1007/s00371-015-1071-5   Google Scholar

Download


Published
2018-12-30

Cited by

ZURITA, B., LUNA, L., HERNÁNDEZ, J., & RAMÍREZ, F. . (2018). BOVW FOR CLASSIFICATION IN GEOMETRICS SHAPES. Applied Computer Science, 14(4), 5–11. https://doi.org/10.23743/acs-2018-25

Authors

Baldemar ZURITA 
baldemar.zurita@gmail.com
Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala Mexico

Authors

Luís LUNA 

Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala Mexico

Authors

José HERNÁNDEZ 

* Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala Mexico

Authors

Federico RAMÍREZ 

Apizaco Technological Institute, Departament of Computer and Systems, Apizaco, Tlaxcala Mexico

Statistics

Abstract views: 110
PDF downloads: 22


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.