BOVW FOR CLASSIFICATION IN GEOMETRICS SHAPES
Baldemar ZURITA
baldemar.zurita@gmail.comApizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala (Mexico)
Luís LUNA
Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala (Mexico)
José HERNÁNDEZ
* Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala (Mexico)
Federico RAMÍREZ
Apizaco Technological Institute, Departament of Computer and Systems, Apizaco, Tlaxcala (Mexico)
Abstract
The classification of forms is a process used in various areas, to perform a classification based on the manipulation of shape contours it is necessary to extract certain common characteristics, it is proposed to use the bag of visual words model, this method consists of three phases: detection and extraction of characteristics, representation of the image and finally the classification. In the first phase of detection and extraction the SIFT and SURF methods will be used, later in the second phase a dictionary of words will be created through a process of clustering using K-means, EM, K-means in combination with EM, finally in the Classification will be compared algorithms of SVM, Bayes, KNN, RF, DT, AdaBoost, NN, to determine the performance and accuracy of the proposed method.
Keywords:
BOVW, classification, codebookReferences
Ben Hamza, A. (2016). A graph-theoretic approach to 3D shape classification. Neurocomputing, 211, 11–21.
DOI: https://doi.org/10.1016/j.neucom.2015.12.130
Google Scholar
Jia, Q., Fan, X., Liu, Y., Li, H., Luo, Z., & Guo, H. (2016). Hierarchical projective invariant contexts for shape recognition. Pattern Recognition, 52, 358–374. https://doi.org/10.1016/J.PATCOG. 2015.11.003
DOI: https://doi.org/10.1016/j.patcog.2015.11.003
Google Scholar
Li, C., & Ben Hamza, A. (2014). Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey. Multimedia Systems, 20(3), 253–281. https://doi.org/10.1007/s00530-013-0318-0
DOI: https://doi.org/10.1007/s00530-013-0318-0
Google Scholar
Shaban, A., Rabiee, H., Farajtabar, M., & Ghazvininejad M. (2013). From local similarity to global coding; an application to image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (pp. 2794–2801). Portland, USA: IEEE.
DOI: https://doi.org/10.1109/CVPR.2013.360
Google Scholar
Sivic, J., & Zisserman, A. (2003). Video Google: a text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision – Volume 2 (pp. 1–9). USA: IEEE Computer Society Washington.
DOI: https://doi.org/10.1109/ICCV.2003.1238663
Google Scholar
Szelinski, R. (2011). Computer Vision: Algorithms and Applications (pp. 658–729). Springer Verlag.
Google Scholar
Wang, X., Feng, B., Bai, X., Liu, W., & Latecki, L. J. (2014). Bag of contour fragments for robust shape classification. Pattern Recognition, 47(6), 2116–2125.
DOI: https://doi.org/10.1016/j.patcog.2013.12.008
Google Scholar
Ye, J., & Yu, Y. (2016). A fast modal space transform for robust nonrigid shape retrieval. The Visual Computer, 32(5), 553–568. https://doi.org/10.1007/s00371-015-1071-5
DOI: https://doi.org/10.1007/s00371-015-1071-5
Google Scholar
Authors
Baldemar ZURITAbaldemar.zurita@gmail.com
Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala Mexico
Authors
Luís LUNAApizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala Mexico
Authors
José HERNÁNDEZ* Apizaco Technological Institute, Computer Systems Department, Apizaco, Tlaxcala Mexico
Authors
Federico RAMÍREZApizaco Technological Institute, Departament of Computer and Systems, Apizaco, Tlaxcala Mexico
Statistics
Abstract views: 139PDF downloads: 24
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Archana Gunakala, Afzal Hussain Shahid, A COMPARATIVE STUDY ON PERFORMANCE OF BASIC AND ENSEMBLE CLASSIFIERS WITH VARIOUS DATASETS , Applied Computer Science: Vol. 19 No. 1 (2023)
- Sahar ZAMANI KHANGHAH, Keivan MAGHOOLI, EMOTION RECOGNITION FROM HEART RATE VARIABILITY WITH A HYBRID SYSTEM COMBINED HIDDEN MARKOV MODEL AND POINCARE PLOT , Applied Computer Science: Vol. 20 No. 1 (2024)
- Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI, APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY , Applied Computer Science: Vol. 20 No. 2 (2024)
- Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti, CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK , Applied Computer Science: Vol. 19 No. 2 (2023)
- Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI, A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Robert KARPIŃSKI, KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Anitha Rani PALAKAYALA, Kuppusamy P, A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY , Applied Computer Science: Vol. 20 No. 3 (2024)
- Workineh TESEMA, INEFFICIENCY OF DATA MINING ALGORITHMS AND ITS ARCHITECTURE: WITH EMPHASIS TO THE SHORTCOMING OF DATA MINING ALGORITHMS ON THE OUTPUT OF THE RESEARCHES , Applied Computer Science: Vol. 15 No. 3 (2019)
- Amina ALYAMANI, Oleh YASNIY, CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING , Applied Computer Science: Vol. 16 No. 4 (2020)
- Miguel Angel BELLO RIVERA, Carlos Alberto REYES GARCÍA, Tania Cristal TALAVERA ROJAS, Perfecto Malaquías QUINTERO FLORES, Rodolfo Eleazar PÉREZ LOAIZA, AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS , Applied Computer Science: Vol. 19 No. 4 (2023)
You may also start an advanced similarity search for this article.