HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES
Article Sidebar
Open full text
Issue Vol. 19 No. 2 (2023)
-
CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC
Nouhaila BOUALOULOU, Taoufiq BELHOUSSINE DRISSI, Benayad NSIRI1-24
-
MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK
Qingyu Liu, Roben A. Juanatas25-42
-
APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES
Mariano LARIOS, Perfecto M. QUINTERO-FLORES , Mario ANZURES-GARCÍA , Miguel CAMACHO-HERNANDEZ43-54
-
APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM
Tomasz Sikora, Wanda Gryglewicz-Kacerka55-62
-
THE POTENTIAL FOR REAL-TIME TESTING OF HIGH FREQUENCY TRADING STRATEGIES THROUGH A DEVELOPED TOOL DURING VOLATILE MARKET CONDITIONS
Mantas Vaitonis, Konstantinas Korovkinas63-81
-
NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT
Thanh-Lam BUI, Ngoc-Tien TRAN82-95
-
A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL
Krzysztof Michalczyk, Mariusz Warzecha, Robert Baran96-111
-
HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES
Mouna TARIK, Ayoub MNIAI, Khalid JEBARI112-124
-
CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti125-146
-
EXPLOITING BERT FOR MALFORMED SEGMENTATION DETECTION TO IMPROVE SCIENTIFIC WRITINGS
Abdelrahman Halawa, Shehab Gamalel-Din; Abdurrahman Nasr126-141
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
The main aim of predictive maintenance is to minimize downtime, failure risks and maintenance costs in manufacturing systems. Over the past few years, machine learning methods gained ground with diverse and successful applications in the area of predictive maintenance. This study shows that performing preprocessing techniques such as oversampling and features selection for failure prediction, is promising. For instance, to handle imbalanced data, the SMOTE-Tomek method is used. For features selection, three different methods can be applied: Recursive Feature Elimination, Random Forest and Variance Threshold. The data considered in this paper for simulation is used in literature; it is applied to aircraft engine sensors measurements to predict engines failure, while the predicting algorithm used is a Support Vector Machine. The results show that classification accuracy can be significantly boosted by using the preprocessing techniques.
Keywords:
References
Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier. DOI: https://doi.org/10.1016/B978-075067531-4/50006-3
Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research,4(1), 23-45. DOI: https://doi.org/10.1080/21693277.2016.1192517
Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering,137, 106024. http://doi.org/10.1016/j.cie.2019.106024 DOI: https://doi.org/10.1016/j.cie.2019.106024
Nacchia, M., Fruggiero, F., Lambiase, A., & Bruton, K. (2021). A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. Applied Sciences,11(6), 2546. http://doi.org/10.3390/app11062546 DOI: https://doi.org/10.3390/app11062546
Yeh, C. H., Lin, M. H., Lin, C. H., Yu, C. E., & Chen, M. J. (2019). Machine learning for long cycle maintenance prediction of wind turbine. Sensors,19(7), 1671. http://doi.org/10.3390/s19071671 DOI: https://doi.org/10.3390/s19071671
Traini, E., Bruno, G., D’antonio, G., & Lombardi, F. (2019). Machine learning framework for predictive maintenance in milling. IFAC-PapersOnLine, 52(13), 177-182. http://doi.org/10.1016/j.ifacol.2019.11.172 DOI: https://doi.org/10.1016/j.ifacol.2019.11.172
Bekar, E. T., Nyqvist, P., & Skoogh, A. (2020). An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study. Advances in Mechanical Engineering, 12(5), 1687814020919207. DOI: https://doi.org/10.1177/1687814020919207
Fernandes, M., Canito, A., Bolón-Canedo, V., Conceição, L., Praça, I., & Marreiros, G. (2019). Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International journal of information management, 46, 252-262. DOI: https://doi.org/10.1016/j.ijinfomgt.2018.10.006
Lai, S. T., & Leu, F. Y. (2017). Data preprocessing quality management procedure for improving big data applications efficiency and practicality. In Advances on Broad-Band Wireless Computing, Communication and Applications: Proceedings of the 11th International Conference On Broad-Band Wireless Computing, Communication and Applications (BWCCA–2016) November 5–7, 2016, Korea (pp. 731-738). Springer International Publishing. https://doi.org/10.1007/978-3-319-49106-6_73 DOI: https://doi.org/10.1007/978-3-319-49106-6_73
Abidi, M. H., Mohammed, M. K., & Alkhalefah, H. (2022). Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing. Sustainability,14(6), 3387. DOI: https://doi.org/10.3390/su14063387
Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational intelligence, 20(1), 18-36. DOI: https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
Rendon, E., Alejo, R., Castorena, C., Isidro-Ortega, F. J., & Granda-Gutierrez, E. E. (2020). Data sampling methods to deal with the big data multi-class imbalance problem. Applied Sciences, 10(4), 1276. http://doi.org/10.3390/app10041276 DOI: https://doi.org/10.3390/app10041276
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority oversampling technique. Journal of artificial intelligence research, 16, 321-357 DOI: https://doi.org/10.1613/jair.953
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE.
Kotsiantis, S. B., & Pintelas, P. E. (2003). Mixture of expert agents for handling imbalanced data sets. Annals of Mathematics, Computing & Teleinformatics,1(1), 46-55.
Elhassan, T., & Aljurf, M. (2016). Classification of imbalance data using tomek link (t-link) combined with random under-sampling (rus) as a data reduction method. Global J Technol Optim S, 1, 2016. DOI: https://doi.org/10.21767/2472-1956.100011
Zhu, Y., Jia, C., Li, F., & Song, J. (2020). Inspector: a lysine succinylation predictor based on edited nearestneighbor undersampling and adaptive synthetic oversampling. Analytical biochemistry, 593, 113592. http://doi.org/10.1016/j.ab.2020.11359 DOI: https://doi.org/10.1016/j.ab.2020.113592
Batista, G. E., Bazzan, A. L., & Monard, M. C. (2003, December). Balancing training data for automated annotation of keywords: a case study. In WOB (pp. 10-18).
Wang, Z. H. E., Wu, C., Zheng, K., Niu, X., & Wang, X. (2019). SMOTETomek-based resampling for personality recognition. Ieee Access,7, 129678-129689. http://doi.org/10.1109/ACCESS.2019.2940061 DOI: https://doi.org/10.1109/ACCESS.2019.2940061
Huang, J., Li, Y. F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and software Technology, 67, 108-127. DOI: https://doi.org/10.1016/j.infsof.2015.07.004
Jović, A., Brkić, K., & Bogunović, N. (2015, May). A review of feature selection methods with applications. In 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 1200-1205). Ieee. http://doi.org/10.1109/MIPRO.2015.7160458 DOI: https://doi.org/10.1109/MIPRO.2015.7160458
Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A data mining perspective (Vol. 453). Springer Science & Business Media. DOI: https://doi.org/10.1007/978-1-4615-5725-8
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28. DOI: https://doi.org/10.1016/j.compeleceng.2013.11.024
Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839. http://doi.org/10.1016/j.csda.2019.106839 DOI: https://doi.org/10.1016/j.csda.2019.106839
Huljanah, M., Rustam, Z., Utama, S., & Siswantining, T. (2019, June). Feature selection using random forest classifier for predicting prostate cancer. In IOP Conference Series: Materials Science and Engineering (Vol. 546, No. 5, p. 052031). IOP Publishing. http://doi.org/10.1088/1757-899X/546/5/052031 DOI: https://doi.org/10.1088/1757-899X/546/5/052031
Aremu, O. O., Cody, R. A., Hyland-Wood, D., & McAree, P. R. (2020). A relative entropy based feature selection framework for asset data in predictive maintenance. Computers & Industrial Engineering, 145, 106536.. http://doi.org/10.1016/j.cie.2020.106536 DOI: https://doi.org/10.1016/j.cie.2020.106536
Wang, J., Li, C., Han, S., Sarkar, S., & Zhou, X. (2017). Predictive maintenance based on event-log analysis: A case study. IBM Journal of Research and Development, 61(1), 11-121. http://doi.org/10.1147/jrd.2017.2648298 DOI: https://doi.org/10.1147/JRD.2017.2648298
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. http://doi.org/10.1023/A:1010933404324 Hasan, M. A. M., Nasser, M., Ahmad, S., & Molla, K. I. (2016). Feature selection for intrusion detection using random forest. Journal of information security, 7(3), 129-140. http://doi.org/10.4236/jis.2016.73009 DOI: https://doi.org/10.4236/jis.2016.73009
Themistocleous, M., Papadaki, M., & Kamal, M. M. (Eds.). (2020). Information Systems: 17th European, Mediterranean, and Middle Eastern Conference, EMCIS 2020, Dubai, United Arab Emirates, November 25–26, 2020, Proceedings (Vol. 402). Springer Nature. http://doi.org/10.1007/978-3-030-63396-7 DOI: https://doi.org/10.1007/978-3-030-63396-7
Granitto, P. M., Furlanello, C., Biasioli, F., & Gasperi, F. (2006). Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometrics and intelligent laboratory systems, 83(2), 83-90. http://doi.org/10.1016/j.chemolab.2006.01.00 DOI: https://doi.org/10.1016/j.chemolab.2006.01.007
Ambarwati, Y. S., & Uyun, S. (2020, December). Feature selection on magelang duck egg candling image using variance threshold method. In 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 694-699). IEEE. http://doi.org/10.1109/isriti51436.2020.9315486 DOI: https://doi.org/10.1109/ISRITI51436.2020.9315486
Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions on neural networks, 10(5), 988-999. DOI: https://doi.org/10.1109/72.788640
Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision support systems, 50(2), 491-500. DOI: https://doi.org/10.1016/j.dss.2010.11.006
Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision support systems, 37(4), 543-558. DOI: https://doi.org/10.1016/S0167-9236(03)00086-1
Gohel, H. A., Upadhyay, H., Lagos, L., Cooper, K., & Sanzetenea, A. (2020). Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nuclear Engineering and Technology, 52(7), 1436-1442. http://doi.org/10.1016/j.net.2019.12.029 DOI: https://doi.org/10.1016/j.net.2019.12.029
Singla, M., & Shukla, K. K. (2020). Robust statistics-based support vector machine and its variants: a survey. Neural Computing and Applications, 32(15), 11173-11194.http://doi.org/10.1007/s00521-019- 04627-6 DOI: https://doi.org/10.1007/s00521-019-04627-6
https://www.kaggle.com/datasets/nafisur/dataset-for-predictive-maintenance.
Tarik, M., & Jebari, K. (2020). Maintenance Prediction by Machine Learning: Study Review of Some Supervised Learning Algorithms. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management. Harare, Zimbabwe: IEOM Society International
Article Details
Abstract views: 519
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
