HISTOPATHOLOGY IMAGE CLASSIFICATION USING HYBRID PARALLEL STRUCTURED DEEP-CNN MODELS
Article Sidebar
Open full text
Issue Vol. 18 No. 1 (2022)
-
STRENGTH ANALYSIS OF A PROTOTYPE COMPOSITE HELICOPTER ROTOR BLADE SPAR
Rafał KLIZA, Karol ŚCISŁOWSKI, Ksenia SIADKOWSKA, Jacek PADYJASEK, Mirosław WENDEKER5-19
-
HISTOPATHOLOGY IMAGE CLASSIFICATION USING HYBRID PARALLEL STRUCTURED DEEP-CNN MODELS
Kevin Joy DSOUZA, Zahid Ahmed ANSARI20-36
-
DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE
Anusha NALLAPAREDDY45-55
-
ANALYSIS OF THE EFFECT OF PROJECTILE IMPACT ANGLE ON THE PUNCTURE OF A STEEL PLATE USING THE FINITE ELEMENT METHOD IN ABAQUS SOFTWARE
Kuba ROSŁANIEC56-69
-
IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION
Lubna RIYAZ, Muheet Ahmed BUTT, Majid ZAMAN70-88
-
DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS
Marcin BADUROWICZ89-98
-
BREAST CANCER CAD SYSTEM BY USING TRANSFER LEARNING AND ENHANCED ROI
Muayed S AL-HUSEINY, Ahmed S SAJIT99-111
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The healthcare industry is one of the many out there that could majorly benefit from advancement in the technology it utilizes. Artificial intelligence (AI) technologies are especially integral and specifically deep learning (DL); a highly useful data-driven technology. It is applied in a variety of different methods but it mainly depends on the structure of the available data. However, with varying applications, this technology produces data in different contexts with particular connotations. Reports which are the images of scans play a great role in identifying the existence of the disease in a patient. Further, the automation in processing these images using technology like CNN-based models makes it highly efficient in reducing human errors otherwise resulting in large data. Hence this study presents a hybrid deep learning architecture to classify the histopathology images to identify the presence of cancer in a patient. Further, the proposed models are parallelized using the TensorFlow-GPU framework to accelerate the training of these deep CNN (Convolution Neural Networks) architectures. This study uses the transfer learning technique during training and early stopping criteria are used to avoid overfitting during the training phase. these models use LSTM parallel layer imposed in the model to experiment with four considered architectures such as MobileNet, VGG16, and ResNet with 101 and 152 layers. The experimental results produced by these hybrid models show that the capability of Hybrid ResNet101 and Hybrid ResNet152 architectures are highly suitable with an accuracy of 90% and 92%. Finally, this study concludes that the proposed Hybrid ResNet-152 architecture is highly efficient in classifying the histopathology images. The proposed study has conducted a well-focused and detailed experimental study which will further help researchers to understand the deep CNN architectures to be applied in application development.
Keywords:
References
Aziz, H. A. (2017). A review of the role of public health informatics in healthcare. Journal of Taibah University Medical Sciences, 12(1), 78–81. https://doi.org/10.1016/J.JTUMED.2016.08.011 DOI: https://doi.org/10.1016/j.jtumed.2016.08.011
Boumaraf, S., Liu, X., Zheng, Z., Ma, X., & Ferkous, C. (2021). A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images. Biomedical Signal Processing and Control, 63, 102192. https://doi.org/10.1016/j.bspc.2020.102192 DOI: https://doi.org/10.1016/j.bspc.2020.102192
Buddhavarapu, V. G., & Jothi, A. A. J. (2020). An experimental study on classification of thyroid histopathology images using transfer learning. Pattern Recognition Letters, 140, 1–9. https://doi.org/10.1016/j.patrec.2020.09.020 DOI: https://doi.org/10.1016/j.patrec.2020.09.020
Deep Learning Frameworks. NVIDIA Developer. (n.d.). Retrieved April 3, 2021 from https://developer.nvidia.com/deep-learning-frameworks
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Li, F.-F. (2010). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255). IEEE. https://doi.org/10.1109/CVPR.2009.5206848 DOI: https://doi.org/10.1109/CVPR.2009.5206848
Djellali, C., Adda, M., & Moutacalli, M. T. (2020). A Data-Driven Deep Learning Model to Pattern Recognition for Medical Diagnosis, by using Model Aggregation and Model Selection. Procedia Computer Science, 177, 387–395. https://doi.org/10.1016/J.PROCS.2020.10.052 DOI: https://doi.org/10.1016/j.procs.2020.10.052
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., Medaglia, R., Meunier-FitzHugh, K. L., Meunier-FitzHugh, L. C. L., Misra, S., Mogaji, E., Sharma, S. K., Singh, J. B., Raghavan, V., Raman, R., Rana, N. P., Samothrakis, S., Spencer, J., Tamilmani, K., Tubadji, A., Walton, P., & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/J.IJINFOMGT.2019.08.002 DOI: https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Eelbode, T., Sinonquel, P., Maes, F., & Bisschops, R. (2021). Pitfalls in training and validation of deep learning systems. Best Practice & Research Clinical Gastroenterology, 52–53, 101712. https://doi.org/10.1016/J.BPG.2020.101712 DOI: https://doi.org/10.1016/j.bpg.2020.101712
Guan, Q., Wang, Y., Ping, B., Li, D., Du, J., Qin, Y., Lu, H., Wan, X., & Xiang, J. (2019). Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. Journal of Cancer, 10(20), 4876. https://doi.org/10.7150/JCA.28769 DOI: https://doi.org/10.7150/jca.28769
Haghighat, E., & Juanes, R. (2020). ScienceDirect SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Computer Methods in Applied Mechanics and Engineering, 373, 113552. https://doi.org/10.1016/j.cma.2020.113552 DOI: https://doi.org/10.1016/j.cma.2020.113552
Improving the convergence of back-propagation learning with second-order methods — NYU Scholars. (n.d.). Retrieved March 23, 2022 from https://nyuscholars.nyu.edu/en/publications/improving-theconvergence-of-back-propagation-learning-with-secon
Kaur, K., & Mittal, S. K. (2020). Classification of mammography image with CNN-RNN based semantic features and extra tree classifier approach using LSTM. Materials Today: Proceedings, in press. https://doi.org/10.1016/j.matpr.2020.09.619 DOI: https://doi.org/10.1016/j.matpr.2020.09.619
Kaur, P., Singh, G., & Kaur, P. (2019). Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Informatics in Medicine Unlocked, 16, 100151. https://doi.org/10.1016/J.IMU.2019.01.001 DOI: https://doi.org/10.1016/j.imu.2019.01.001
Leen, T. K., Dietterich, T. G., & Tresp, V. (2001). Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference. MIT Press.
Liang, R. B., Li, P., Li, B. T., Jin, J. T., Rusch, V. W., Jones, D. R., Wu, Y. L., Liu, Q., Yang, J., Yang, M. Z., Li, S., Long, H., Fu, J. H., Zhang, L. J., Lin, P., Rong, T. H., Hou, X., Lin, S. X., & Yang, H. X. (2021). Modification of Pathologic T Classification for Non-small Cell Lung Cancer With Visceral Pleural Invasion: Data From 1,055 Cases of Cancers ≤ 3 cm. Chest, 160(2), 754–764. https://doi.org/10.1016/J.CHEST.2021.03.022 DOI: https://doi.org/10.1016/j.chest.2021.03.022
Moon, J. C. C., Perez De Arenaza, D., Elkington, A. G., Taneja, A. K., John, A. S., Wang, D., Janardhanan, R., Senior, R., Lahiri, A., Poole-Wilson, P. A., & Pennell, D. J. (2004). The Pathologic Basis of Q-Wave and Non-Q-Wave Myocardial Infarction: A Cardiovascular Magnetic Resonance Study. Journal of the American College of Cardiology, 44(3), 554–560. https://doi.org/10.1016/J.JACC.2004.03.076 DOI: https://doi.org/10.1016/j.jacc.2004.03.076
Pramanik, P. K. D., Pal, S., Mukhopadhyay, M., & Singh, S. P. (2021). Big Data classification: techniques and tools. Applications of Big Data in Healthcare, 2021, 1–43. https://doi.org/10.1016/B978-0-12-820203-6.00002-3 DOI: https://doi.org/10.1016/B978-0-12-820203-6.00002-3
Sarwinda, D, Paradisa, R., Bustamama, A., & Anggiab, P. (2021). Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer. Procedia Computer Science, 179, 423-431. https://doi.org/10.1016/j.procs.2021.01.025 DOI: https://doi.org/10.1016/j.procs.2021.01.025
Sertolli, B., Ren, Z., Schuller, B. W., & Cummins, N. (2021). Representation transfer learning from deep endto-end speech recognition networks for the classification of health states from speech. Computer Speech and Language, 68, 101204. https://doi.org/10.1016/j.csl.2021.101204 DOI: https://doi.org/10.1016/j.csl.2021.101204
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. http://www.robots.ox.ac.uk
Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016). A Dataset for Breast Cancer Histopathological Image Classification. IEEE Transactions on Biomedical Engineering, 63(7), 1455–1462. https://doi.org/10.1109/TBME.2015.2496264 DOI: https://doi.org/10.1109/TBME.2015.2496264
TensorFlow Framework & GPU Acceleration. NVIDIA Data Center. (n.d.). Retrieved March 23, 2022 from https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/tensorflow/
Tripathi, S., Singh, S. K., & Lee, H. K. (2021). An end-to-end breast tumour classification model using context-based patch modelling – A BiLSTM approach for image classification. Computerized Medical Imaging and Graphics, 87, 101838. https://doi.org/10.1016/j.compmedimag.2020.101838 DOI: https://doi.org/10.1016/j.compmedimag.2020.101838
UCI Machine Learning Repository. (n.d.). Retrieved March 23, 2022 from https://archive.ics.uci.edu/ml/index.php
Xiang, Q., Zhang, G., Wang, X., Lai, J., Li, R., & Hu, Q. (2019). Fruit image classification based on Mobilenetv2 with transfer learning technique. ACM International Conference Proceeding Series (pp. 1–7). Association for Computing Machinery. https://doi.org/10.1145/3331453.3361658 DOI: https://doi.org/10.1145/3331453.3361658
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555 DOI: https://doi.org/10.1109/JPROC.2020.3004555
Article Details
Abstract views: 482
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
