A systematic literature review of diabetes prediction using metaheuristic algorithm-based feature selection: Algorithms and challenges method
Sirmayanti
Politeknik Negeri Ujung Pandang, Department of Electrical Engineering (Indonesia)
https://orcid.org/0000-0001-8962-0385
Pulung Hendro PRASTYO
pulung.hendro@poliupg.ac.idPoliteknik Negeri Ujung Pandang, Department of Informatics and Computer Engineering (Indonesia)
https://orcid.org/0000-0003-1082-3011
Mahyati
Politeknik Negeri Ujung Pandang, Department of Chemical Engineering (Indonesia)
https://orcid.org/0000-0002-4898-0154
Farhan RAHMAN
Politeknik Negeri Ujung Pandang, Department of Electrical Engineering (Indonesia)
https://orcid.org/0009-0009-9668-6871
Abstract
Diabetes is a disruption in metabolism that leads to elevated levels of glucose in the bloodstream and causes many other problems, such as stroke, kidney failure, heart, and nerve issues that are of serious concern globally. Because many researchers have attempted to build accurate Diabetes prediction models, this field has seen significant advancements. Nevertheless, performance issues are still a substantial challenge in model building. Machine Learning techniques have shown strong performance in prediction and classification tasks. Unfortunately, they often encounter challenges due to noisy features and high feature space dimensionality, significantly affecting Diabetes prediction performance. To address the problems, we can employ metaheuristic algorithm-based feature selection. However, there has been limited research on metaheuristic algorithm-based feature selections for Diabetes prediction. Therefore, this paper presents a systematic literature review of Diabetes prediction using metaheuristic algorithm-based feature selections. The data used in this study is the last ten years of published articles from 2014 to 2024. For this extensive investigation, 50 scholarly papers were gathered and analyzed to extract meaningful information about metaheuristic algorithm-based feature selections. This paper reviews metaheuristic algorithm-based feature selection, focusing on the algorithms used and the challenges faced in diabetes prediction.
Keywords:
Metaheuristics, diabetes, Feature selectionReferences
Abdel-Fattah Sayed, S., Nabil, E., & Badr, A. (2016). A binary clonal flower pollination algorithm for feature selection. Pattern Recognition Letters, 77, 21–27. https://doi.org/10.1016/j.patrec.2016.03.014
Google Scholar
Abdollahi, J., & Aref, S. (2024). Early prediction of diabetes using feature selection and machine learning algorithms. SN Computer Science, 5(2), 217. https://doi.org/10.1007/s42979-023-02545-y
Google Scholar
Abdollahi, J., & Nourimoghaddam, B. (2023). Diabetes data classiication using deep learning approach and feature selection based on genetic. https://doi.org/10.21203/rs.3.rs-2855804/v1
Google Scholar
Abdullah, A. S., Özok, Y. E., & Rahebi, J. (2018). A novel method for retinal optic disc detection using bat meta-heuristic algorithm. Medical and Biological Engineering and Computing, 56(11), 2015–2024. https://doi.org/10.1007/s11517-018-1840-1
Google Scholar
Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019). IEEE Access, 9, 26766–26791. https://doi.org/10.1109/ACCESS.2021.3056407
Google Scholar
Agrawal, S., Patle, B. K., & Sanap, S. (2024). A systematic review on metaheuristic approaches for autonomous path planning of unmanned aerial vehicles. Drone Systems and Applications, 12, 1–28. https://doi.org/10.1139/dsa-2023-0093
Google Scholar
Akinola, O. O., Ezugwu, A. E., Agushaka, J. O., Zitar, R. A., & Abualigah, L. (2022). Multiclass feature selection with metaheuristic optimization algorithms: A review. Neural Computing and Applications, 34(22), 19751–19790. https://doi.org/10.1007/s00521-022-07705-4
Google Scholar
Alatas, B., & Can, U. (2015). Physics based metaheuristic optimization algorithms for global optimization physics based metaheuristic algorithms for global optimization. American Journal of Information Science and Computer Engineering, 1(3), 94-106.
Google Scholar
Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf, A. (2023). Hyperparameter search for machine learning algorithms for optimizing the computational complexity. Processes, 11(2). https://doi.org/10.3390/pr11020349
Google Scholar
Alirezaei, M., Niaki, S. T. A., & Niaki, S. A. A. (2019). A bi-objective hybrid optimization algorithm to reduce noise and data dimension in diabetes diagnosis using support vector machines. Expert Systems with Applications, 127, 47–57. https://doi.org/10.1016/j.eswa.2019.02.037
Google Scholar
Aliyu, H. A., Muritala, I. O., Bello-Salau, H., Mohammed, S., Onumanyi, A. J., & Ajayi, O.-O. (2024). Optimizing machine learning algorithms for diabetes data: A metaheuristic approach to balancing and tuning classifiers parameters. Franklin Open, 8, 100153. https://doi.org/10.1016/j.fraope.2024.100153
Google Scholar
Al-Tawil, M., Mahafzah, B. A., Al Tawil, A., & Aljarah, I. (2023). Bio-inspired machine learning approach to type 2 diabetes detection. Symmetry, 15(3), 764. https://doi.org/10.3390/sym15030764
Google Scholar
Asia Pacific Tele-Opthamology Society. (2019, September 08). APTOS 2019 blindness detection. Kaggle. https://www.kaggle.com/competitions/aptos2019-blindness-detection/data
Google Scholar
Aslam, N., Khan, I. U., Alkhalifah, S., Al-Sadiq, S. A., Bughararah, S. W., Al-Otabi, M. A., & Al-Odinie, Z. M. (2021). Predicting diabetic patient hospital readmission using optimized random forest and firefly evolutionary algorithm. International Journal on Advanced Science, Engineering and Information Technology, 11(5), 1876–1883. https://doi.org/10.18517/ijaseit.11.5.14221
Google Scholar
Astuti, L. W., Saluza, I., Yulianti, E., & Dhamayanti, D. (2022). Feature selection menggunakan binary wheal optimizaton algorithm (BWOA) pada klasifikasi penyakit diabetes. Jurnal Ilmiah Informatika Global, 13(1). https://doi.org/10.36982/jiig.v13i1.2057
Google Scholar
Balakrishnan, U., Venkatachalapathy, K., & Marimuthu, G. S. (2016). An enhanced PSO-DEFS based feature selection with biometric authentication for identification of diabetic retinopathy. Journal of Innovative Optical Health Sciences, 9(6), 1650020. https://doi.org/10.1142/S1793545816500206
Google Scholar
Bekaddour, F., Rahmoune, M. B., Salim, C., & Hafaifa, A. (2017). Performance study of different metaheuristics for diabetes diagnosis.. In I. Rojas, G. Joya, & A. Catala (Eds.), Advances in Computational Intelligence (Vol. 10305, pp. 591–602). Springer International Publishing. https://doi.org/10.1007/978-3-319-59153-7_51
Google Scholar
Bhimavarapu, U., & Battineni, G. (2022). Automatic microaneurysms detection for early diagnosis of diabetic retinopathy using improved discrete particle swarm optimization. Journal of Personalized Medicine, 12(2), 317. https://doi.org/10.3390/jpm12020317
Google Scholar
Bielza, C., & Larrañaga, P. (2020). Data-driven computational neuroscience. Cambridge University Press.
Google Scholar
Bilal, A., Sun, G., Mazhar, S., & Imran, A. (2022). Improved grey wolf optimization-based feature selection and classification using CNN for diabetic retinopathy detection. In V. Suma, X. Fernando, K.-L. Du, & H. Wang (Eds.), Evolutionary Computing and Mobile Sustainable Networks (Vol. 116, pp. 1–14). Springer Singapore. https://doi.org/10.1007/978-981-16-9605-3_1
Google Scholar
Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135–4151. https://doi.org/10.1016/j.asoc.2011.02.032
Google Scholar
Blum, C., Puchinger, J., Raidl, G., & Roli, A. (2010). A brief survey on hybrid metaheuristics. 4th International Conference on Bioinspired Optimization (pp. 3-16).
Google Scholar
Carmona, E. J., Rincón, M., García-Feijoó, J., & Martínez-de-la-Casa, J. M. (2008). Identification of the optic nerve head with genetic algorithms. Artificial Intelligence in Medicine, 43(3), 243-259. https://doi.org/10.1016/j.artmed.2008.04.005
Google Scholar
Chaudhuri, A., & Sahu, T. P. (2021). Feature selection using Binary Crow Search Algorithm with time varying flight length. Expert Systems with Applications, 168, 114288. https://doi.org/10.1016/j.eswa.2020.114288
Google Scholar
Chellappan, D., & Rajaguru, H. (2023a). Detection of diabetes through microarray genes with enhancement of classifiers performance. Diagnostics, 13(16), 2654. https://doi.org/10.3390/diagnostics13162654
Google Scholar
Chellappan, D., & Rajaguru, H. (2023b). Enhancement of classifier performance using swarm intelligence in detection of diabetes from pancreatic microarray gene. Biomimetics, 8, 503 https://doi.org/10.20944/preprints202308.1033.v1
Google Scholar
Chowdhury, A. A., Das, A., Hoque, K. K. S., & Karmaker, D. (2022). A comparative study of hyperparameter optimization techniques for deep learning. In M. S. Uddin, P. K. Jamwal, & J. C. Bansal (Eds.), Proceedings of International Joint Conference on Advances in Computational Intelligence (pp. 509–521). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0332-8_38
Google Scholar
Clore, J., Cios, K., DeShazo, J., & Strack, B. (2014, February 5). Diabetes 130-US Hospitals for Years 1999-2008 [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5230J
Google Scholar
Decencière, E., Zhang, X., Cazuguel, G., Laÿ, B., Cochener, B., Trone, C., Gain, P., Ordóñez-Varela, J. R., Massin, P., Erginay, A., Charton, B., & Klein, J. C. (2014). Feedback on a publicly distributed image database: The messidor database. Image Analysis and Stereology, 33(3), 231–234. https://doi.org/10.5566/ias.1155
Google Scholar
Dehkordi, S. T., Khatibi Bardsiri, A., & Zahedi, M. H. (2019). Prediction and diagnosis of diabetes mellitus using a water wave optimization algorithm. Journal of AI and Data Mining, 7(4), 617–630. https://doi.org/10.22044/JADM.2018.6446.1758
Google Scholar
Donahue, K., Chouldechova, A., & Kenthapadi, K. (2022). Human-algorithm collaboration: Achieving complementarity and avoiding unfairness. ACM International Conference Proceeding Series (pp. 1639–1656). Association for Computing Machinery. https://doi.org/10.1145/3531146.3533221
Google Scholar
Faraji-Biregani, M. & Nematbakhsh, N. (2019). Diabetes prediction recommender system based on artificial neural networks and sine-cosine optimization algorithm. Conference on Knowledge-Based Engineering and Innovation, Iran University of Science and Technology (pp. 263-268). IEEE.
Google Scholar
Gadekallu, T. R., & Khare, N. (2017a). Cuckoo search optimized reduction and fuzzy logic classifier for heart disease and diabetes prediction. International Journal of Fuzzy System Applications, 6(2), 25–42. https://doi.org/10.4018/IJFSA.2017040102
Google Scholar
García-Domínguez, A., Galván-Tejada, C. E., Magallanes-Quintanar, R., Gamboa-Rosales, H., Curiel, I. G., Peralta-Romero, J., & Cruz, M. (2023). Diabetes detection models in mexican patients by combining machine learning algorithms and feature selection techniques for clinical and paraclinical attributes: A comparative evaluation. Journal of Diabetes Research, 2023. https://doi.org/10.1155/2023/9713905
Google Scholar
Gupta, A., Rajput, I. S., Gunjan, Jain, V., & Chaurasia, S. (2022). NSGA-II-XGB: Meta-heuristic feature selection with XGBoost framework for diabetes prediction. Concurrency and Computation: Practice and Experience, 34(21), e7123. https://doi.org/10.1002/cpe.7123
Google Scholar
Haghighi, M. S., & Hoseini, M. J. M. (2020). Improving machine learning accuracy in diagnosing diseases using feature selection based on the fruit-fly algorithm. 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS) (pp. 1-6). IEEE.. https://doi.org/10.1109/ICSPIS51611.2020.9349593
Google Scholar
Hartono, N. (2022). Multi-objective bees algorithm for feature selection. 1st International Conference on Emerging Issues in Technology, Engineering and Science (ICE-TES) (pp. 358–369). ScitePress. https://doi.org/10.5220/0010754200003113
Google Scholar
Hoda, Z., Nadimi-Shahraki, M. H. (2016). Feature selection based on whale optimization algorithm for diseases diagnosis. International Journal of Computer Science and Information Security, 14(9), 1243-1247, .http://dx.doi.org/10.13140/RG.2.2.29065.88161
Google Scholar
Hoover, A., & Goldbaum, M. (2003). Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Transactions on Medical Imaging, 22(8), 951–958. https://doi.org/10.1109/TMI.2003.815900
Google Scholar
Jadhav, A. S., Patil, P. B., & Biradar, S. (2021). Optimal feature selection-based diabetic retinopathy detection using improved rider optimization algorithm enabled with deep learning. Evolutionary Intelligence, 14, 1431–1448. https://doi.org/10.1007/s12065-020-00400-0
Google Scholar
Jain, A., & Singhal, A. (2023). Utilizing metaheuristic machine learning techniques for early diabetes detection. 2023 Second International Conference on Informatics (ICI) (pp. 1–6). IEEE. https://doi.org/10.1109/ICI60088.2023.10421100
Google Scholar
Jia, W., Sun, M., Lian, J., & Hou, S. (2022). Feature dimensionality reduction: A review. Complex and Intelligent Systems, 8, 2663–2693. https://doi.org/10.1007/s40747-021-00637-x
Google Scholar
Cukierski, W. (2014, July 8). Diabetic Retinophaty Detection. Kaggle. https://www.kaggle.com/c/diabetic-retinopathy-detection/data
Google Scholar
Kamel, S. R., & Yaghoubzadeh, R. (2021). Feature selection using grasshopper optimization algorithm in diagnosis of diabetes disease. Informatics in Medicine Unlocked, 26, 100707. https://doi.org/10.1016/j.imu.2021.100707
Google Scholar
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022a). Diagnostics of articular cartilage damage based on generated acoustic sgnals using ANN—Part I: Femoral‐tibial joint. Sensors, 22(6), 2176. https://doi.org/10.3390/s22062176
Google Scholar
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022b). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN—Part II: Patellofemoral Joint. Sensors, 22(10), 3765. https://doi.org/10.3390/s22103765
Google Scholar
Karthikeyan, R., & Alli, P. (2018). Feature selection and parameters optimization of support vector machines based on hybrid glowworm swarm optimization for classification of diabetic retinopathy. Journal of Medical Systems, 42, 195. https://doi.org/10.1007/s10916-018-1055-x
Google Scholar
Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Pietilä, J., Kälviäinen, H., & Uusitalo, H. (2021, January 25). DIARETDB1 - Standard Diabetic Retinopathy Database. Standard Diabetic Retinopathy Database. https://www.kaggle.com/datasets/nguyenhung1903/diaretdb1-standard-diabetic-retinopathy-database
Google Scholar
Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., & Pietilä, J. (2007). DIARETDB0: Evaluation Database and Methodology for Diabetic Retinopathy Algorithms.
Google Scholar
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. International Conference on Neural Networks (ICNN’95) (pp. 1942-1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968
Google Scholar
Khurma, A. R., Aljarah, I., & Sharieh, A. (2020). Rank based moth flame optimisation for feature selection in the medical application. 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. https://doi.org/10.1109/CEC48606.2020.9185498
Google Scholar
Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009
Google Scholar
Kulkarni, M. D., Deore, S. S., Chen, C.-L., Khalaf, O. I., Deng, Y.-Y., Uddin, M., & Hamad, A. A. (2024). Predicting microvascular complications in dabetic mellitus using improved enhanced coati optimizer. International Journal of Computing and Digital Systems, 16(1), 1485-1498. http://dx.doi.org/10.12785/ijcds/1601110
Google Scholar
Larxel. (2020). DRIVE Digital retinal images for vessel extraction. Kaggle. https://www.kaggle.com/datasets/andrewmvd/drive-digital-retinal-images-for-vessel-extraction?resource=download
Google Scholar
Le, T. M., Vo, T. M., Pham, T. N., & Dao, S. V. T. (2021). A novel wrapper-based feature selection for early diabetes prediction enhanced with a metaheuristic. IEEE Access, 9, 7869–7884. https://doi.org/10.1109/ACCESS.2020.3047942
Google Scholar
Li, J., Guo, C., Wang, T., Xu, Y., Peng, F., Zhao, S., Li, H., Jin, D., Xia, Z., Che, M., Zuo, J., Zheng, C., Hu, H., & Mao, G. (2022). Interpretable machine learning-derived nomogram model for early detection of diabetic retinopathy in type 2 diabetes mellitus: A widely targeted metabolomics study. Nutrition and Diabetes, 12, 36. https://doi.org/10.1038/s41387-022-00216-0
Google Scholar
Li, X., Curiger, M., Dornberger, R., & Hanne, T. (2023). Optimized computational diabetes prediction with feature selection algorithms. ACM International Conference Proceeding Series (pp. 36–43). Association for Computing Machinery. https://doi.org/10.1145/3596947.3596948
Google Scholar
Liu, R., Rong, Y., & Peng, Z. (2020). A review of medical artificial intelligence. Global Health Journal, 4(2), 42–45). https://doi.org/10.1016/j.glohj.2020.04.002
Google Scholar
Majhi, S. K. (2019). How effective is the moth-flame optimization in diabetes data classification. In J. Kalita, V. E. Balas, S. Borah, & R. Pradhan (Eds.), Recent Developments in Machine Learning and Data Analytics (Vol. 740, pp. 79–87). Springer Singapore. https://doi.org/10.1007/978-981-13-1280-9_7
Google Scholar
Mallika, C., & Selvamuthukumaran, S. (2021). A hybrid crow search and grey wolf optimization technique for enhanced medical data classification in diabetes diagnosis system. International Journal of Computational Intelligence Systems, 14, 157. https://doi.org/10.1007/s44196-021-00013-0
Google Scholar
Chui, M., Issler, M., Roberts, R., & Yee, L. (2023, July 20). McKinsey Technology Trends Outlook 2023. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-top-trends-in-tech-2023
Google Scholar
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
Google Scholar
Vaishali, R., Sasikala, R., Ramasubbareddy, S., Remya, S., & Nalluri, S. (2017). Genetic algorithm based feature selection and MOE Fuzzy classification algorithm on Pima Indians Diabetes dataset. InternationalConference on Computing Networking and Informatics (ICCNI) (pp. 1–5). IEEE. http://dx.doi.org/10.1109/ICCNI.2017.8123815
Google Scholar
Nagaraj, P., Deepalakshmi, P., Mansour, R. F., & Almazroa, A. (2021a). Artificial flora algorithm-based feature selection with gradient boosted tree model for diabetes classification. Diabetes, Metabolic Syndrome and Obesity, 14, 2789–2806. https://doi.org/10.2147/DMSO.S312787
Google Scholar
Navazi, F., Yuan, Y., & Archer, N. (2023). An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection. Healthcare Analytics, 4, 100227. https://doi.org/10.1016/j.health.2023.100227
Google Scholar
Nivetha, N. R. P., Periasamy, P. S., & Anitha, P. (2024). Binary fire hawks optimizer with deep learning driven noninvasive diabetes detection and classification. Bratislava Medical Journal, 125(2), 117–124. https://doi.org/10.4149/BLL_2024_020
Google Scholar
Patil, R., Tamane, S., & Patil, K. (2020). Self organising fuzzy logic classifier for predicting type-2 diabetes mellitus using ACO-ANN. International Journal of Advanced Computer Science and Applications, 11(7), 348–353. https://doi.org/10.14569/IJACSA.2020.0110746
Google Scholar
Patil, R., Tamane, S., Rawandale, S. A., & Patil, K. (2022). A modified mayfly-SVM approach for early detection of type 2 diabetes mellitus. International Journal of Electrical and Computer Engineering, 12(1), 524–533. https://doi.org/10.11591/ijece.v12i1.pp524-533
Google Scholar
Perveen, S., Shahbaz, M., Guergachi, A., & Keshavjee, K. (2016). Performance analysis of data mining classification techniques to predict diabetes. Procedia Computer Science, 82, 115–121. https://doi.org/10.1016/j.procs.2016.04.016
Google Scholar
Pradhan, G., Thapa, G., Pradhan, R., Khandelwal, B., Panigrahi, R., Bhoi, A. K., & Barsocchi, P. (2024). Optimized forest framework with a binary multineighborhood artificial bee colony for enhanced diabetes mellitus detection. International Journal of Computational Intelligence Systems, 17, 194. https://doi.org/10.1007/s44196-024-00598-2
Google Scholar
Qaraad, M., Amjad, S., Manhrawy, I. I. M., Fathi, H., Hassan, B. A., & Kafrawy, P. El. (2021). A hybrid feature selection optimization model for high dimension data classification. IEEE Access, 9, 42884–42895. https://doi.org/10.1109/ACCESS.2021.3065341
Google Scholar
Raj, A., Maizura, N., Noor, M., Mohemad, R., Azliza, N., Mat, C., & Hussain, S. (2024). An efficient feature selection and extraction using metaheuristic technique for diabetic retinopathy. Journal of Electrical Systems, 20(6s), 20–26. https://doi.org/10.52783/jes.2844
Google Scholar
Rashid, A. (2020, July 18). Iraqi Society Diabetes (ISD). Mendeley Data. https://doi.org/10.17632/wj9rwkp9c2.1
Google Scholar
Reddy, G. T., & Khare, N. (2017). Hybrid firefly-bat optimized fuzzy artificial neural network based classifier for diabetes diagnosis. International Journal of Intelligent Engineering and Systems, 10(4), 18–27. https://doi.org/10.22266/ijies2017.0831.03
Google Scholar
Salman, I., Ucan, O. N., Bayat, O., & Shaker, K. (2018). Impact of metaheuristic iteration on artificial neural network structure in medical data. Processes, 6(5), 57. https://doi.org/10.3390/pr6050057
Google Scholar
Sameen Hameed, S., Olayemi Petinrin, O., Osman Hashi, A., & Saeed, F. (2018). Filter-wrapper combination and embedded feature selection for gene expression data. International Journal of Advances in Soft Computing and its Applications, 10(1), 1-15.
Google Scholar
Samreen, S. (2021). Memory-efficient, accurate and early diagnosis of diabetes through a machine learning pipeline employing crow search-based feature engineering and a stacking ensemble. IEEE Access, 9, 134335–134354. https://doi.org/10.1109/ACCESS.2021.3116383
Google Scholar
Selvakumar, S., Abdullah, A. S., & Suganya, R. (2019). Decision support system for type II diabetes and its risk factor prediction using bee-based harmony search and decision tree algorithm decision support system for type II diabetes. International Journal of Biomedical Engineering and Technology, 29(1), 46-67. https://doi.org/10.1504/IJBET.2019.096880
Google Scholar
Shankar, S., & Manikandan. (2019). Diagnosis of diabetes diseases using optimized fuzzy rule set by grey wolf optimization. Pattern Recognition Letters, 125, 432–438. https://doi.org/10.1016/j.patrec.2019.06.005
Google Scholar
Shuja, M., Mittal, S., & Zaman, M. (2018). Decision support predictive model for prognosis of diabetes using SMOTE and decision tree impact of performance analysis of varied subjects on overall result: An empirical discourse of educational data mining view project. International Journal of Applied Engineering Research, 13(11), 9277-9282.
Google Scholar
Soliman, O. S., & Elhamd, E. A. (2015). A chaotic levy flights bat algorithm for diagnosing diabetes mellitus. International Journal of Computer Applications, 111(1) 36-42.
Google Scholar
Sravanthi, A. L., Al-Ashmawy, S., Kaur, C., Ansari, M. S. Al, Saravanan, K. A., & Vuyyuru, V. A. (2023). Utilizing multimodal medical data and a hybrid optimization model to improve diabetes prediction. International Journal of Advanced Computer Science and Applications, 14(11), 754–764. https://doi.org/10.14569/IJACSA.2023.0141176
Google Scholar
Sreejith, S., Khanna Nehemiah, H., & Kannan, A. (2020). Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection. Computers in Biology and Medicine, 126, 103991. https://doi.org/10.1016/j.compbiomed.2020.103991
Google Scholar
Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M. A., & Van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4), 501–509. https://doi.org/10.1109/TMI.2004.825627
Google Scholar
Sun, L., Qin, H., Przystupa, K., Cui, Y., Kochan, O., Skowron, M., & Su, J. (2022). A hybrid feature selection framework using improved sine cosine algorithm with metaheuristic techniques. Energies, 15(10), 3485. https://doi.org/10.3390/en15103485
Google Scholar
Sutha, S., Gnanambigai, N., & Dinadayalan, P. (2023). Data-driven machine learning ensemble approach for diabetes risk prediction at early stages. Journal of Research Administration Society of Research Administrators International, 5(2), 6101-6115.
Google Scholar
Tarik, M., Mniai, A., & Jebari, K. (2023). Hybrid feature selection and support vector machine framework for predicting maintenance failures. Applied Computer Science, 19(2), 112–124. https://doi.org/10.35784/acs-2023-18
Google Scholar
Tomar, V., Bansal, M., & Singh, P. (2023). Metaheuristic algorithms for optimization: A brief review. Engineering Proceedings, 59(1), 238. https://doi.org/10.3390/engproc2023059238
Google Scholar
UC Irvine Machine Learning Repository. (2016, October 06). Pima Indians Diabetes Database. Kaggle. https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
Google Scholar
UC Irvine Machine Learning Repository. (2020, November 7). Early Stage Diabetes Risk Prediction. Archive.Ics.Uci.Edu. https://doi.org/10.24432/C5VG8H
Google Scholar
Ullah, N., Mohmand, M. I., Ullah, K., Gismalla, M. S. M., Ali, L., Khan, S. U., & Ullah, N. (2022). Diabetic retinopathy detection using genetic algorithm-based CNN features and error correction output code SVM framework classification model. Wireless Communications and Mobile Computing, 2022(1), 7095528. https://doi.org/10.1155/2022/7095528
Google Scholar
Ur Rehman, A., & Khanum, A. (2014). Swarm optimized fuzzy reasoning model (SOFRM) for diabetes diagnosis. Life Science Journal 11(3), 42-49. http://www.dx.doi.org/10.7537/marslsj110314.07
Google Scholar
Vijayalakshmi, P. S., & Kumar, M. J. (2022). Improved grey wolf optimization algorithm (iGWO) for the detection of diabetic retinopathy using convnets and region based segmentation techniques. International Journal of Health Sciences, 6(S1), 13100–13118. https://doi.org/10.53730/ijhs.v6nS1.8330
Google Scholar
Welikala, R. A., Fraz, M. M., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T. H., & Barman, S. A. (2015). Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Computerized Medical Imaging and Graphics, 43, 64–77. https://doi.org/10.1016/j.compmedimag.2015.03.003
Google Scholar
Yasaswini, V., & Baskaran, S. (2021). An optimization of feature selection for classification using modified bat algorithm. International Journal of Information Technology and Computer Science, 13(4), 38–46. https://doi.org/10.5815/ijitcs.2021.04.04
Google Scholar
Zhang, Z., Lu, Y., Ye, M., Huang, W., Jin, L., Zhang, G., Ge, Y., Baghban, A., Zhang, Q., Wang, H., & Zhu, W. (2024). A novel evolutionary ensemble prediction model using harmony search and stacking for diabetes diagnosis. Journal of King Saud University - Computer and Information Sciences, 36(1), 101873. https://doi.org/10.1016/j.jksuci.2023.101873
Google Scholar
Authors
SirmayantiPoliteknik Negeri Ujung Pandang, Department of Electrical Engineering Indonesia
https://orcid.org/0000-0001-8962-0385
Authors
Pulung Hendro PRASTYOpulung.hendro@poliupg.ac.id
Politeknik Negeri Ujung Pandang, Department of Informatics and Computer Engineering Indonesia
https://orcid.org/0000-0003-1082-3011
Authors
MahyatiPoliteknik Negeri Ujung Pandang, Department of Chemical Engineering Indonesia
https://orcid.org/0000-0002-4898-0154
Authors
Farhan RAHMANPoliteknik Negeri Ujung Pandang, Department of Electrical Engineering Indonesia
https://orcid.org/0009-0009-9668-6871
Statistics
Abstract views: 12PDF downloads: 32
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Nawazish NAVEED, Hayan T. MADHLOOM, Mohd Shahid HUSAIN, BREAST CANCER DIAGNOSIS USING WRAPPER-BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORK , Applied Computer Science: Vol. 17 No. 3 (2021)
- Mouna TARIK, Ayoub MNIAI, Khalid JEBARI, HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES , Applied Computer Science: Vol. 19 No. 2 (2023)
- Reehana SHAIK, Ibrahim SIDDIQUE , NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING , Applied Computer Science: Vol. 20 No. 4 (2024)
- Xianlei GE, Vladimir MARIANO, RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion , Applied Computer Science: Vol. 19 No. 3 (2023)
- Anitha Rani PALAKAYALA, Kuppusamy P, A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY , Applied Computer Science: Vol. 20 No. 3 (2024)
- Rowell HERNANDEZ, Robert ATIENZA, CAREER TRACK PREDICTION USING DEEP LEARNING MODEL BASED ON DISCRETE SERIES OF QUANTITATIVE CLASSIFICATION , Applied Computer Science: Vol. 17 No. 4 (2021)
- Ekhlas H. KARAM, Eman H. JADOO, DESIGN OF MODIFIED SECOND ORDER SLIDING MODE CONTROLLER BASED ON ST ALGORITHM FOR BLOOD GLUCOSE REGULATION SYSTEMS , Applied Computer Science: Vol. 16 No. 2 (2020)
- Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI , FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE , Applied Computer Science: Vol. 20 No. 2 (2024)
- Bilal OWAIDAT, EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE , Applied Computer Science: Vol. 20 No. 3 (2024)
You may also start an advanced similarity search for this article.