EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION
Article Sidebar
Open full text
Issue Vol. 19 No. 3 (2023)
-
A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION
Victor CHUNG, Jenny ESPINOZA1-16
-
IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY
Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL17-27
-
FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES
Sara SALEHI28-46
-
NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT
Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI47-63
-
EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION
Tilla IZSÁK, László MARÁK, Mihály ORMOS64-82
-
DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY
Jolanta BRZOZOWSKA, Jakub PIZOŃ, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, Katarzyna PIOTROWSKA83-95
-
ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION
Sri INDRA MAIYANTI, Anita DESIANI, Syafrina LAMIN, P PUSPITAHATI, Muhammad ARHAMI, Nuni GOFAR, Destika CAHYANA96-115
-
RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion
Xianlei GE, Vladimir MARIANO116-132
-
ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK
Md. Torikur RAHMAN, Mohammad ALAUDDIN, Uttam Kumar DEY, Dr. A.H.M. Saifullah SADI133-159
-
PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU
Erizal ERIZAL, Mohammad DIQI160-173
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
In recent years with the advent of computational power, Machine Learning has become a popular approach in financial forecasting, particularly for stock price analysis. In this paper, the authors develop a non-recurrent active trading algorithm based on stock price prediction, using Support Vector Machines on high frequency data, and compare its risk adjusted performance to the returns of a statistical portfolio predicted by the Capital Asset Pricing Model. The authors selected the three highest volume securities from a pool of 100 initially selected stock dataset to investigate the algorithmic trading strategy. The abnormal return estimates are significant and positive, and the systematic risk is lower than unity in all cases, suggesting lower risk compared to the market. Moreover, the estimated beta values for all stocks were close to zero, indicating a market independent process. The correlation analysis revealed weak correlations among the processes, supporting the potential for risk reduction and volatility mitigation through portfolio diversification. The authors tested an equally weighted portfolio of the selected three assets and demonstrated a remarkable return of 1348% during the evaluation period from July 1st, 2020, to January 1st, 2023. The results suggest that the weak form of market efficiency can be questioned, as the algorithmic trading strategy, employing a Support Vector Machine binary classification model, has consistently generated statistically significant and substantial abnormal returns using historical market data.
Keywords:
References
Acharya, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of Financial Economics, 77(2), 375-410. https://doi.org/10.1016/j.jfineco.2004.06.007 DOI: https://doi.org/10.1016/j.jfineco.2004.06.007
Ariyo, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock price prediction using the ARIMA model. 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, (pp. 106-112). IEEE. https://doi.org/10.1109/UKSim.2014.67 DOI: https://doi.org/10.1109/UKSim.2014.67
Briola, A., Turiel, J., Marcaccioli, R., Cauderan, A., & Aste, T. (2021). Deep reinforcement learning for active high frequency trading. arXiv. https://doi.org/10.48550/arXiv.2101.07107
Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 3(2), 185–205. https://doi.org/10.1142/s0219720005001004 DOI: https://doi.org/10.1142/S0219720005001004
Srivastava, D., & Bhambhu, L. (2010). Data classification using support vector machine. Journal of Theoretical and Applied Information Technology, 12(1), 1-7. Retrieved from http://www.jatit.org/volumes/research-papers/Vol12No1/1Vol12No1.pdf
Fama, E. F., & Laffer, A. B. (1971). Information and capital markets. Journal of Business, 44(3), 289-298. http://dx.doi.org/10.1086/295379 DOI: https://doi.org/10.1086/295379
Fama, E. F. (1991). Efficient capital markets: II. The Journal of Finance, 46(5), 1575-1617. https://doi.org/10.1111/j.1540-6261.1991.tb04636.x DOI: https://doi.org/10.1111/j.1540-6261.1991.tb04636.x
Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of Economic Perspectives, 18(3), 25-46. https://doi.org/10.1257/0895330042162430 DOI: https://doi.org/10.1257/0895330042162430
Grossman, S. J., & Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. The American Economic Review, 70(3), 393-408. http://www.jstor.org/stable/1805228
Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2018). Stock price prediction using support vector regression on daily and up to the minute prices. The Journal of Finance and Data Science, 4(3), 183-201. https://doi.org/10.1016/j.jfds.2018.04.003 DOI: https://doi.org/10.1016/j.jfds.2018.04.003
Ph.-D. B. I. J., & Levy, K. N. (1989). The complexity of the stock market. The Journal of Portfolio Management, 16(1), 19-27. https://ssrn.com/abstract=2447013 DOI: https://doi.org/10.3905/jpm.1989.409244
Jensen, M. C. (1968). The performance of mutual funds in the period 1945-1964. The Journal of Finance, 23(2), 389-416. https://doi.org/10.1111/j.1540-6261.1968.tb00815.x DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00815.x
Ji, X., Wang, J., & Yan, Z. (2021). A stock price prediction method based on deep learning technology. International Journal of Crowd Science, 5(1), 55-72. https://doi.org/10.1108/IJCS-05- 2020-0012 DOI: https://doi.org/10.1108/IJCS-05-2020-0012
Kohda, S., & Yoshida, K. (2022). Characteristics and forecast of high-frequency trading. Transactions of the Japanese Society for Artificial Intelligence, 37(5), 1-9. https://doi.org/10.1527/tjsai.37-5_B-M44 DOI: https://doi.org/10.1527/tjsai.37-5_B-M44
Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307-319. https://doi.org/10.1016/S0925-2312(03)00372-2 DOI: https://doi.org/10.1016/S0925-2312(03)00372-2
Lai, S., Wang, M., Zhao, S., & Arce, G. R. (2023). Predicting high-frequency stock movement with differential transformer neural network. Electronics, 12(13), 2943. https://doi.org/10.3390/electronics12132943 DOI: https://doi.org/10.3390/electronics12132943
Lintner, J. (1969). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets: A reply. The Review of Economics and Statistics, 51(2), 222–224. https://doi.org/10.2307/1926735 DOI: https://doi.org/10.2307/1926735
Lu, W., Li, J., Wang, J., & Oin, L. (2021). A CNN-BiLSTM-AM method for stock price prediction. Neural Computing & Applications 33, 4741–4753. https://doi.org/10.1007/s00521-020-05532-z DOI: https://doi.org/10.1007/s00521-020-05532-z
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.2307/2975974 DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1), 141-183. https://doi.org/10.2307/3003143 DOI: https://doi.org/10.2307/3003143
Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768–783. https://doi.org/10.2307/1910098 DOI: https://doi.org/10.2307/1910098
Sapankevych, N. I., & Sankar, R. (2009). Time series prediction using support vector machines: A survey. IEEE Computational Intelligence Magazine, 4(2), 24-38. https://doi.org/10.1109/MCI.2009.932254 DOI: https://doi.org/10.1109/MCI.2009.932254
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x DOI: https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
Treynor, J. L. (1965). How to rate management of investment funds. Harvard Business Review, 43, 63-75. https://doi.org/10.1002/9781119196679.ch10 DOI: https://doi.org/10.1002/9781119196679.ch10
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. arXiv. https://doi.org/10.48550/arXiv.1206.2944
Vapnik, V., & Cortes, C. (1995). Support-vector networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018 DOI: https://doi.org/10.1007/BF00994018
Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A. (2020). Stock closing price prediction using machine https://doi.org/10.1007/s11408-022-00421-y DOI: https://doi.org/10.1016/j.procs.2020.03.326
Yu, P., Yan, X. (2020). Stock price prediction based on deep neural networks. Neural Computing and Applications, 32, 1609-1628. https://doi.org/10.1007/s00521-019-04212-x DOI: https://doi.org/10.1007/s00521-019-04212-x
Zhang, Z., Khushi, M. (2020, July). Ga-mssr: Genetic algorithm maximizing sharpe and sterling ratio method for RoboTrading. 2020 International Joint Conference on Neural Networks (IJCNN)(pp. 1-8). IEEE. https://doi.org/10.1109/IJCNN48605.2020.9206647 DOI: https://doi.org/10.1109/IJCNN48605.2020.9206647
Article Details
Abstract views: 1128
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
