EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION

Tilla IZSÁK

izsak.tilla@student.ujs.sk
J. Selye University, Faculty of Economics and Informatics, Department of Economics, (Slovakia)
https://orcid.org/0009-0002-4275-5279

László MARÁK


J. Selye University, Faculty of Economics and Informatics, Department of Informatics (Slovakia)
https://orcid.org/0000-0002-2280-8014

Mihály ORMOS


J. Selye University, Faculty of Economics and Informatics, Department of Economics (Slovakia)
https://orcid.org/0000-0002-3224-7636

Abstract

In recent years with the advent of computational power, Machine Learning has become a popular approach in financial forecasting, particularly for stock price analysis. In this paper, the authors develop a non-recurrent active trading algorithm based on stock price prediction, using Support Vector Machines on high frequency data, and compare its risk adjusted performance to the returns of a statistical portfolio predicted by the Capital Asset Pricing Model. The authors selected the three highest volume securities from a pool of 100 initially selected stock dataset to investigate the algorithmic trading strategy. The abnormal return estimates are significant and positive, and the systematic risk is lower than unity in all cases, suggesting lower risk compared to the market. Moreover, the estimated beta values for all stocks were close to zero, indicating a market independent process. The correlation analysis revealed weak correlations among the processes, supporting the potential for risk reduction and volatility mitigation through portfolio diversification. The authors tested an equally weighted portfolio of the selected three assets and demonstrated a remarkable return of 1348% during the evaluation period from July 1st, 2020, to January 1st, 2023. The results suggest that the weak form of market efficiency can be questioned, as the algorithmic trading strategy, employing a Support Vector Machine binary classification model, has consistently generated statistically significant and substantial abnormal returns using historical market data.


Keywords:

Stock Trading Algorithm, Machine Learning, SVM, Performance Analysis

Acharya, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of Financial Economics, 77(2), 375-410. https://doi.org/10.1016/j.jfineco.2004.06.007
DOI: https://doi.org/10.1016/j.jfineco.2004.06.007   Google Scholar

Ariyo, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock price prediction using the ARIMA model. 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, (pp. 106-112). IEEE. https://doi.org/10.1109/UKSim.2014.67
DOI: https://doi.org/10.1109/UKSim.2014.67   Google Scholar

Briola, A., Turiel, J., Marcaccioli, R., Cauderan, A., & Aste, T. (2021). Deep reinforcement learning for active high frequency trading. arXiv. https://doi.org/10.48550/arXiv.2101.07107
  Google Scholar

Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 3(2), 185–205. https://doi.org/10.1142/s0219720005001004
DOI: https://doi.org/10.1142/S0219720005001004   Google Scholar

Srivastava, D., & Bhambhu, L. (2010). Data classification using support vector machine. Journal of Theoretical and Applied Information Technology, 12(1), 1-7. Retrieved from http://www.jatit.org/volumes/research-papers/Vol12No1/1Vol12No1.pdf
  Google Scholar

Fama, E. F., & Laffer, A. B. (1971). Information and capital markets. Journal of Business, 44(3), 289-298. http://dx.doi.org/10.1086/295379
DOI: https://doi.org/10.1086/295379   Google Scholar

Fama, E. F. (1991). Efficient capital markets: II. The Journal of Finance, 46(5), 1575-1617. https://doi.org/10.1111/j.1540-6261.1991.tb04636.x
DOI: https://doi.org/10.1111/j.1540-6261.1991.tb04636.x   Google Scholar

Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of Economic Perspectives, 18(3), 25-46. https://doi.org/10.1257/0895330042162430
DOI: https://doi.org/10.1257/0895330042162430   Google Scholar

Grossman, S. J., & Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. The American Economic Review, 70(3), 393-408. http://www.jstor.org/stable/1805228
  Google Scholar

Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2018). Stock price prediction using support vector regression on daily and up to the minute prices. The Journal of Finance and Data Science, 4(3), 183-201. https://doi.org/10.1016/j.jfds.2018.04.003
DOI: https://doi.org/10.1016/j.jfds.2018.04.003   Google Scholar

Ph.-D. B. I. J., & Levy, K. N. (1989). The complexity of the stock market. The Journal of Portfolio Management, 16(1), 19-27. https://ssrn.com/abstract=2447013
DOI: https://doi.org/10.3905/jpm.1989.409244   Google Scholar

Jensen, M. C. (1968). The performance of mutual funds in the period 1945-1964. The Journal of Finance, 23(2), 389-416. https://doi.org/10.1111/j.1540-6261.1968.tb00815.x
DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00815.x   Google Scholar

Ji, X., Wang, J., & Yan, Z. (2021). A stock price prediction method based on deep learning technology. International Journal of Crowd Science, 5(1), 55-72. https://doi.org/10.1108/IJCS-05- 2020-0012
DOI: https://doi.org/10.1108/IJCS-05-2020-0012   Google Scholar

Kohda, S., & Yoshida, K. (2022). Characteristics and forecast of high-frequency trading. Transactions of the Japanese Society for Artificial Intelligence, 37(5), 1-9. https://doi.org/10.1527/tjsai.37-5_B-M44
DOI: https://doi.org/10.1527/tjsai.37-5_B-M44   Google Scholar

Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307-319. https://doi.org/10.1016/S0925-2312(03)00372-2
DOI: https://doi.org/10.1016/S0925-2312(03)00372-2   Google Scholar

Lai, S., Wang, M., Zhao, S., & Arce, G. R. (2023). Predicting high-frequency stock movement with differential transformer neural network. Electronics, 12(13), 2943. https://doi.org/10.3390/electronics12132943
DOI: https://doi.org/10.3390/electronics12132943   Google Scholar

Lintner, J. (1969). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets: A reply. The Review of Economics and Statistics, 51(2), 222–224. https://doi.org/10.2307/1926735
DOI: https://doi.org/10.2307/1926735   Google Scholar

Lu, W., Li, J., Wang, J., & Oin, L. (2021). A CNN-BiLSTM-AM method for stock price prediction. Neural Computing & Applications 33, 4741–4753. https://doi.org/10.1007/s00521-020-05532-z
DOI: https://doi.org/10.1007/s00521-020-05532-z   Google Scholar

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.2307/2975974
DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x   Google Scholar

Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1), 141-183. https://doi.org/10.2307/3003143
DOI: https://doi.org/10.2307/3003143   Google Scholar

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768–783. https://doi.org/10.2307/1910098
DOI: https://doi.org/10.2307/1910098   Google Scholar

Sapankevych, N. I., & Sankar, R. (2009). Time series prediction using support vector machines: A survey. IEEE Computational Intelligence Magazine, 4(2), 24-38. https://doi.org/10.1109/MCI.2009.932254
DOI: https://doi.org/10.1109/MCI.2009.932254   Google Scholar

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
DOI: https://doi.org/10.1111/j.1540-6261.1964.tb02865.x   Google Scholar

Treynor, J. L. (1965). How to rate management of investment funds. Harvard Business Review, 43, 63-75. https://doi.org/10.1002/9781119196679.ch10
DOI: https://doi.org/10.1002/9781119196679.ch10   Google Scholar

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. arXiv. https://doi.org/10.48550/arXiv.1206.2944
  Google Scholar

Vapnik, V., & Cortes, C. (1995). Support-vector networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018
DOI: https://doi.org/10.1007/BF00994018   Google Scholar

Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A. (2020). Stock closing price prediction using machine https://doi.org/10.1007/s11408-022-00421-y
DOI: https://doi.org/10.1016/j.procs.2020.03.326   Google Scholar

Yu, P., Yan, X. (2020). Stock price prediction based on deep neural networks. Neural Computing and Applications, 32, 1609-1628. https://doi.org/10.1007/s00521-019-04212-x
DOI: https://doi.org/10.1007/s00521-019-04212-x   Google Scholar

Zhang, Z., Khushi, M. (2020, July). Ga-mssr: Genetic algorithm maximizing sharpe and sterling ratio method for RoboTrading. 2020 International Joint Conference on Neural Networks (IJCNN)(pp. 1-8). IEEE. https://doi.org/10.1109/IJCNN48605.2020.9206647
DOI: https://doi.org/10.1109/IJCNN48605.2020.9206647   Google Scholar

Download


Published
2023-09-30

Cited by

IZSÁK, T., MARÁK, L., & ORMOS, M. (2023). EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION. Applied Computer Science, 19(3), 64–82. https://doi.org/10.35784/acs-2023-25

Authors

Tilla IZSÁK 
izsak.tilla@student.ujs.sk
J. Selye University, Faculty of Economics and Informatics, Department of Economics, Slovakia
https://orcid.org/0009-0002-4275-5279

Authors

László MARÁK 

J. Selye University, Faculty of Economics and Informatics, Department of Informatics Slovakia
https://orcid.org/0000-0002-2280-8014

Authors

Mihály ORMOS 

J. Selye University, Faculty of Economics and Informatics, Department of Economics Slovakia
https://orcid.org/0000-0002-3224-7636

Statistics

Abstract views: 552
PDF downloads: 249


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.