AERODYNAMIC RESEARCH OF THE OVERPRESSURE DEVICE FOR INDIVIDUAL TRANSPORT

Paweł MAGRYTA

p.magryta@pollub.pl
Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin (Poland)

Abstract

Paper proposes a solution of overpressure device for individual transport, the purpose of which is to accumulate the overpressure in a certain geometric area, through the use of specially designed three-dimensional structures. In order to verify the underlying assumptions of the idea, it was decided to perform a simulation study of air flow stream within the proposed unit. These studies were done in Star CD - Pro Star 3.2 software. Further studies were carried out on the actual real model. The  verification was performed to compare and identify the main parameters of air flow through the three-dimensional structure.


Keywords:

aviation propulsion, CFD, 3D structure, aerodynamic drag

Ambarwati, L., Verhaeghe, R., Arem, B., & Pel, A. J. (2017). Assessment of transport performance index for urban transport development strategies — Incorporating residents' preferences. Environmental Impact Assessment Review, 63, 107-115. https://doi.org/10.1016/j.eiar.2016.10.004
DOI: https://doi.org/10.1016/j.eiar.2016.10.004   Google Scholar

Camba, J. D., Contero, M., & Company, P. (2016). Parametric CAD modeling: An analysis of strategies for design reusability. Computer-Aided Design, 74, 18–31. https://doi.org/10.1016/j.cad.2016.01.003
DOI: https://doi.org/10.1016/j.cad.2016.01.003   Google Scholar

Decker, M., Fleischer, T., Meyer-Soylu, S., & Jens, S. (2013). Personal air vehicles as a new option for commuting in Europe: vision or illusion? European Transport Conference 2013.
  Google Scholar

Gössling, S. (2016). Urban transport justice. Journal of Transport Geography, 54, 1–9. https://doi.org/10.1016/j.jtrangeo.2016.05.002
DOI: https://doi.org/10.1016/j.jtrangeo.2016.05.002   Google Scholar

Hu, S.-C., Lin, T., Fu, B.-R., & Wang, T.-Y. (2017). Air curtain application in a purged unified pod. Applied Thermal Engineering, 111, 1179–1183. https://doi.org/10.1016/j.applthermaleng.2016.10.022
DOI: https://doi.org/10.1016/j.applthermaleng.2016.10.022   Google Scholar

Juraeva, M., Ryu, K. J., Jeongc, S.-H., & Song, D. J. (2016). Influences of the train-wind and aircurtain to reduce the particle concentration inside a subway tunnel. Tunnelling and Underground Space Technology, 52, 23-29. https://doi.org/10.1016/j.tust.2015.11.008
DOI: https://doi.org/10.1016/j.tust.2015.11.008   Google Scholar

Lublin University of Technology. (2006). Report I/02/2006. Badania symulacyjne doświadczalnego układu wtryskowego silnika lotniczego K9-E. Project 03605/CT12-6/2005.
  Google Scholar

Magryta, P. (2009). Simulation Research of the Aerodynamic contumacy of three-dimensional structures. MSC Thesis, 3–4. Lublin University of Technology.
  Google Scholar

Moureh, J., & Yataghene, M. (2016). Numerical and experimental study of airflow patterns and global exchanges through an air curtain subjected to external lateral flow. Experimental Thermal and Fluid Science, 74, 308–323. https://doi.org/10.1016/j.expthermflusci.2015.11.028
DOI: https://doi.org/10.1016/j.expthermflusci.2015.11.028   Google Scholar

Nazarewicz, A., Szlachetka, M., & Wendeker, M. (2006). Wykorzystanie programu Star – CD do modelowania zjawisk w silnikach spalinowych. In Informatyka w technice. Tom I. Lubelskie Towarzystwo Naukowe.
  Google Scholar

Nedeff, V., Bejenariu, C., Lazar, G., & Agop, M. (2013). Generalized lift force for complex fluid. Powder Technology, 235, 685–695. https://doi.org/10.1016/j.powtec.2012.11.027
DOI: https://doi.org/10.1016/j.powtec.2012.11.027   Google Scholar

Przybylski, W., & Deja, M. (2007). Komputerowo wspomagane wytwarzanie maszyn. Warszawa: Wydawnictwo WNT.
  Google Scholar

Smirnova, M. N., & Zvyaguin, A. V. (2011). Theoretical solution for the lift force of “ecranoplan” moving near rigid surface. Acta Astronautica, 68(11–12), 1676–1680. https://doi.org/10.1016/j.actaastro.2010.12.006
DOI: https://doi.org/10.1016/j.actaastro.2010.12.006   Google Scholar

Skarka, W., & Mazurek, A. (2005). Catia – podstawy modelowania i zapisu konstrukcji. Wydawnictwo Helion.
  Google Scholar

Wełyczko, A. (2005). Catia v5 – Przykłady efektywnego zastosowania systemu w projektowaniu mechanicznym. Wydawnictwo Helion.
  Google Scholar

Zhu, L., Li, M., & Martin, R. R. (2016). Direct simulation for CAD models undergoing parametric modifications. Computer-Aided Design, 78, 3–13. https://doi.org/10.1016/j.cad.2016.05.006
DOI: https://doi.org/10.1016/j.cad.2016.05.006   Google Scholar

Download


Published
2017-03-30

Cited by

MAGRYTA, P. (2017). AERODYNAMIC RESEARCH OF THE OVERPRESSURE DEVICE FOR INDIVIDUAL TRANSPORT. Applied Computer Science, 13(1), 5–19. https://doi.org/10.23743/acs-2017-01

Authors

Paweł MAGRYTA 
p.magryta@pollub.pl
Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin Poland

Statistics

Abstract views: 80
PDF downloads: 14


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.