USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY
Article Sidebar
Open full text
Issue Vol. 13 No. 1 (2017)
-
AERODYNAMIC RESEARCH OF THE OVERPRESSURE DEVICE FOR INDIVIDUAL TRANSPORT
Paweł MAGRYTA5-19
-
MODELLING OF A LARGE ROTARY HEAT EXCHANGER
Tytus TULWIN20-28
-
INFORMATION TECHNOLOGY OF STOCK INDEXES FORECASTING ON THE BASE OF FUZZY NEURAL NETWORKS
Yuriy TRYUS, Nataliya ANTIPOVA, Kateryna ZHURAVEL, Grygoriy ZASPA29-40
-
CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD
Stanisław BŁAWUCKI, Kazimierz ZALESKI41-50
-
CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS
Michał BIAŁY, Marcin SZLACHETKA51-60
-
FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS
Evans BAIDOO61-74
-
USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY
Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA75-84
-
SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION
Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA85-96
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
The paper presents evaluation of modal analysis usefulness for determination of milling process stability. In the first phase of the study experimental modal analysis was performed and using CutPro 9.5 software, stability lobes were generated. In the next step, machining tests were carried out. The last stage of the experiment involved verification of modal analysis usefulness for evaluation of milling process stability based on surface roughness measurements. Conducted research allowed to state that modal analysis can be a useful tool for determining milling process stability.
Keywords:
References
Ahmadi, K., & Ismail, F. (2012). Stability lobes in milling including process damping and utilizing Multi-Frequency and Semi-Discretization Methods. International Journal of Machine Tools & Manufacture, 54-55, 46–54. https://doi.org/10.1016/j.ijmachtools.2011.11.007 DOI: https://doi.org/10.1016/j.ijmachtools.2011.11.007
Bojanowski, S., & Pawłowski, W. (2011). Teoretyczna analiza modalna zespołu wrzeciennika przedmiotu szlifierki do otworów. Mechanik, 84(11), 870-873.
Budak, E., Tunc, L. T., Alan, S., & Ozguven, H. N. (2012). Prediction of workpiece dynamics and its effects on chatter stability in milling. CIRP Annals-Manufacturing Technology, 61(1), 339–342. https://doi.org/10.1016/j.cirp.2012.03.144 DOI: https://doi.org/10.1016/j.cirp.2012.03.144
Campa, F. J., de Lacalle, L. N. L., & Celaya, A. (2011). Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams. International Journal of Machine Tools & Manufacture, 51(1), 43–53. https://doi.org/10.1016/j.ijmachtools.2010.09.008 DOI: https://doi.org/10.1016/j.ijmachtools.2010.09.008
Ciurana, J. & Quintana, G. (2011). Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture, 51(5), 363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001 DOI: https://doi.org/10.1016/j.ijmachtools.2011.01.001
Kilic, Z. M., & Altintas, Y. (2016). Generalized mechanics and dynamics of metal cutting operations for unified simulations. International Journal of Machine Tools & Manufacture, 104, 1–13. https://doi.org/10.1016/j.ijmachtools.2016.01.006 DOI: https://doi.org/10.1016/j.ijmachtools.2016.01.006
Lehrich, K., & Lis, K. (2014). Analiza modalna korpusu stojaka obrabiarki CNC. Inżynieria Maszyn, 19(1), 20-33.
Maamar, A., Bouzgarrou, B. C., Gagnol, V., & Fathallah, R. (2017). Time Domain Stability Analysis for Machining Processes. Advances in Acoustics and Vibration, 5, 77–88. https://doi.org/10.1007/978-3-319-41459-1_8 DOI: https://doi.org/10.1007/978-3-319-41459-1_8
Płodzień, M., & Żyłka, Ł. (2013). Stabilność 5-osiowego frezowania stopów aluminium. Mechanik, 86(2), 1–12.
Polish Norm: PN-EN 485-2:2016-10. Aluminium and aluminium alloys. Sheet, strip and plate. Part 2: Mechanical properties.
Polish Norm: PN-EN 573-3:2014-02. Aluminium and aluminium alloys. Chemical composition and form of wrought products. Part 3: Chemical composition and form of products. Seger online catalog. (n.d.). Retrieved November 30, 2016, from Seger website, http://www.seger.net.pl/pl
SGS online catalog. (n.d.). Retrieved November 30, 2016, from SGS Solid Carbide Tools website, http://sgstool.com
Sun, Y., & Xiong, Z. (2017). High-order full-discretization method using Lagrange interpolation for stability analysis of turning processes with stiffness variation. Journal of Sound and Vibration, 386, 50–64. https://doi.org/10.1016/j.jsv.2016.08.039 DOI: https://doi.org/10.1016/j.jsv.2016.08.039
Totis, G., Albertelli, P., Sortino, M., & Monno, M. (2014). Efficient evaluation of Process stability in milling with Spindle Speed Variation by using the Chebyshev Collocation Method. Journal of Sound and Vibration, 333(3), 646–668. https://doi.org/10.1016/j.jsv.2013.09.043 DOI: https://doi.org/10.1016/j.jsv.2013.09.043
Totis, G., Albertelli, P., Torta, M., Sortino, M., & Monno, M. (2017). Upgraded stability analysis of milling operations by means of advanced modeling of tooling system bending. International Journal of Machine Tools & Manufacture, 113, 19–34. https://doi.org/10.1016/j.ijmachtools.2016.11.005 DOI: https://doi.org/10.1016/j.ijmachtools.2016.11.005
Twardowski, P. (2006). Stabilność procesu frezowania stali na twardo w warunkach HSM. Archiwum Technologii Maszyn i Automatyzacji, 26(2), 93–101.
Zhang, X. J., Xiong, C. H., Ding, Y., Feng, M. J., & Xiong, Y. L. (2012). Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect. International Journal of Machine Tools & Manufacture, 53(1), 127–140. https://doi.org/10.1016/j.ijmachtools.2011.10.004 DOI: https://doi.org/10.1016/j.ijmachtools.2011.10.004
Article Details
Abstract views: 588
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
