APPLICATION OF A COMPUTER TOOL MONITORING SYSTEM IN CNC MACHINING CENTRES
Damian KOLNY
dkolny@ath.bielsko.plUniversity of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 (Poland)
Dorota WIĘCEK
University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 (Poland)
Paweł ZIOBRO
ZPT Industry | Automation | Research & Development | Innovations (Poland)
Martin KRAJČOVIČ
University of Zilina, Industrial Engineering Department, 010 26 Žilina, Univerzitná 1, (Slovakia)
Abstract
The article presents practical knowledge about production process optimisation as a result of implementing a specialized system monitoring the work of machining tools. It features complex results of the conducted research with use of dedicated equipment and software, whose unconventional application may appear to be an effective IT tool for taking operational and strategic decisions in the machining area. This results from the possibility of analysing the obtained data in both current and long-term perspective, and taking decisions on this basis, which significantly conditions the rationality of using this type of solutions.
Keywords:
current process control, tool wear monitoring system, process optimizationReferences
Addona, D. M. D., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia CIRP, 12, 252–257. https://doi.org/10.1016/j.procir.2013.09.044
DOI: https://doi.org/10.1016/j.procir.2013.09.044
Google Scholar
Barreiro, J., Fernández-Abia, A. I., González-Laguna, A., & Pereira, O. (2017). TCM system in contour milling of very thick-very large steel plates based on vibration and AE signals. Journal of Materials Processing Technology, 246, 144–157. https://doi.org/10.1016/j.jmatprotec.2017.03.016
DOI: https://doi.org/10.1016/j.jmatprotec.2017.03.016
Google Scholar
Jemielniak, K. (2002). Automatyczna diagnostyka stanu narzędzia i procesu skrawania. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
Google Scholar
Jurko, J. (2007). Monitoring and Diagnosis of Drill Wear and the Thermodynamic Phenomenas of Material Removal by drilling of Stainless Steels. In: E.E. Gdoutos (Ed.) Experimental Analysis of Nano and Engineering Materials and Structures (vol. 37, 77–78). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6239-1_37
DOI: https://doi.org/10.1007/978-1-4020-6239-1_37
Google Scholar
Kious, M., Ouahabi, A., Boudraa, M., Serra, R., & Cheknane, A. (2010). Detection process approach of tool wear in high speed milling. Measurement, 43, 1439–1446. https://doi.org/10.1016/j.measurement.2010.08.014
DOI: https://doi.org/10.1016/j.measurement.2010.08.014
Google Scholar
Kuljanic, E., & Sortino, M. (2005). TWEM a method based on cutting forces monitoring tool wear in face milling, Mach. Tools Manuf. J., 45, 29–34. https://doi.org/10.1016/j.ijmachtools.2004.06.016
DOI: https://doi.org/10.1016/j.ijmachtools.2004.06.016
Google Scholar
Kuryjański, R. (2011). Obróbka skrawaniem i obrabiarki. Warszawa: Expol.
Google Scholar
Nouri, M., Fussell, B. K., Ziniti, B. L., & Linder, E. (2015). Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 89, 1–13. https://doi.org/10.1016/j.ijmachtools.2014.10.011
DOI: https://doi.org/10.1016/j.ijmachtools.2014.10.011
Google Scholar
Storch, B. (2001). Podstawy obróbki skrawaniem. Koszalin: Wydaw. Politechniki Koszalińskiej.
Google Scholar
Więcek, D. (2013). Implementation of Artificial Intelligence in Estimating Prime Costs of Producing Machine Elements. Advances in Manufacturing Science and Technology, 37, 43–53. https://doi.org/10.2478/amst-2013-0004
DOI: https://doi.org/10.2478/amst-2013-0004
Google Scholar
Wittbrodt, P. (2014). Nadzorowanie i prognozowanie stanu narzędzi skrawających w procesie skrawania. Innowacje w Zarządzaniu i Inżynierii Produkcji (cz. 1, 833–834). Zakopane: Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją.
Google Scholar
Authors
Damian KOLNYdkolny@ath.bielsko.pl
University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 Poland
Authors
Dorota WIĘCEK University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 Poland
Authors
Paweł ZIOBROZPT Industry | Automation | Research & Development | Innovations Poland
Authors
Martin KRAJČOVIČUniversity of Zilina, Industrial Engineering Department, 010 26 Žilina, Univerzitná 1, Slovakia
Statistics
Abstract views: 104PDF downloads: 6
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Damian KOLNY, Dawid KURCZYK, Józef MATUSZEK, COMPUTER SUPPORT OF ERGONOMIC ANALYSIS OF WORKING CONDITIONS AT WORKSTATIONS , Applied Computer Science: Vol. 15 No. 1 (2019)
- Martin KRAJČOVIČ, Patrik GRZNÁR, UTILISATION OF EVOLUTION ALGORITHM IN PRODUCTION LAYOUT DESIGN , Applied Computer Science: Vol. 13 No. 3 (2017)
- Dariusz PLINTA, Martin KRAJČOVIČ, APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE , Applied Computer Science: Vol. 13 No. 2 (2017)
Similar Articles
- Krystyna MAZUREK-ŁOPACIŃSKA, Magdalena SOBOCIŃSKA, CREATING MARKETING KNOWLEDGE ABOUT THE CONSUMER IN THE CONTEXT OF THE DEVELOPMENT OF INTERNET TOOLS , Applied Computer Science: Vol. 13 No. 3 (2017)
- Janusz MLECZKO, Paweł BOBIŃSKI, PRODUCTION PLANNING IN CONDITIONS OF MASS CUSTOMIZATION BASED ON THEORY OF CONSTRAINTS , Applied Computer Science: Vol. 13 No. 4 (2017)
- Mario BELLO, Alejandra LUNA, Edmondo BONILLA, Crispin HERNANDEZ, Blanca PEDROZA, Alberto PORTILLA, A NOVEL PROFILE’S SELECTION ALGORITHM USING AI , Applied Computer Science: Vol. 16 No. 1 (2020)
- Moon-gee CHOI, USE OF SERIOUS GAMES FOR THE ASSESSMENT OF MILD COGNITIVE IMPAIRMENT IN THE ELDERLY , Applied Computer Science: Vol. 18 No. 2 (2022)
- Rosa Maria VAZQUEZ, Edmundo BONILLA, Eduardo SANCHEZ, Oscar ATRIANO, Cinthya BERRUECOS, APPLICATION OF DATA MINING TECHNIQUES TO FIND RELATIONSHIPS BETWEEN THE DISHES OFFERED BY A RESTAURANT FOR THE ELABORATION OF COMBOS BASED ON THE PREFERENCES OF THE DINERS , Applied Computer Science: Vol. 15 No. 2 (2019)
- Lubna RIYAZ, Muheet Ahmed BUTT, Majid ZAMAN, IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION , Applied Computer Science: Vol. 18 No. 1 (2022)
- Rawaa HAAMED, Ekhlas HAMEED, CONTROLLING THE MEAN ARTERIAL PRESSURE BY MODIFIED MODEL REFERENCE ADAPTIVE CONTROLLER BASED ON TWO OPTIMIZATION ALGORITHMS , Applied Computer Science: Vol. 16 No. 2 (2020)
- Zaid ALSAYGH, Zohair AL-AMEEN, CONTRAST ENHANCEMENT OF SCANNING ELECTRON MICROSCOPY IMAGES USING A NONCOMPLEX MULTIPHASE ALGORITHM , Applied Computer Science: Vol. 18 No. 2 (2022)
- Robert KARPIŃSKI, KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Katarzyna GOSPODAREK, DETERMINATION OF RELATIVE LENGTHS OF BONE SEGMENTS OF THE DOMESTIC CAT'S LIMBS BASED ON THE DIGITAL IMAGE ANALYSIS , Applied Computer Science: Vol. 15 No. 2 (2019)
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.