IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION
Article Sidebar
Open full text
Issue Vol. 18 No. 1 (2022)
-
STRENGTH ANALYSIS OF A PROTOTYPE COMPOSITE HELICOPTER ROTOR BLADE SPAR
Rafał KLIZA, Karol ŚCISŁOWSKI, Ksenia SIADKOWSKA, Jacek PADYJASEK, Mirosław WENDEKER5-19
-
HISTOPATHOLOGY IMAGE CLASSIFICATION USING HYBRID PARALLEL STRUCTURED DEEP-CNN MODELS
Kevin Joy DSOUZA, Zahid Ahmed ANSARI20-36
-
DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE
Anusha NALLAPAREDDY45-55
-
ANALYSIS OF THE EFFECT OF PROJECTILE IMPACT ANGLE ON THE PUNCTURE OF A STEEL PLATE USING THE FINITE ELEMENT METHOD IN ABAQUS SOFTWARE
Kuba ROSŁANIEC56-69
-
IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION
Lubna RIYAZ, Muheet Ahmed BUTT, Majid ZAMAN70-88
-
DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS
Marcin BADUROWICZ89-98
-
BREAST CANCER CAD SYSTEM BY USING TRANSFER LEARNING AND ENHANCED ROI
Muayed S AL-HUSEINY, Ahmed S SAJIT99-111
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Nowadays, heart disease is the major cause of deaths globally. According to a survey conducted by the World Health Organization, almost 18 million people die of heart diseases (or cardiovascular diseases) every day. So, there should be a system for early detection and prevention of heart disease. Detection of heart disease mostly depends on the huge pathological and clinical data that is quite complex. So, researchers and other medical professionals are showing keen interest in accurate prediction of heart disease. Heart disease is a general term for a large number of medical conditions related to heart and one of them is the coronary heart disease (CHD). Coronary heart disease is caused by the amassing of plaque on the artery walls. In this paper, various machine learning base and ensemble classifiers have been applied on heart disease dataset for efficient prediction of coronary heart disease. Various machine learning classifiers that have been employed include k-nearest neighbor, multilayer perceptron, multinomial naïve bayes, logistic regression, decision tree, random forest and support vector machine classifiers. Ensemble classifiers that have been used include majority voting, weighted average, bagging and boosting classifiers. The dataset used in this study is obtained from the Framingham Heart Study which is a long-term, ongoing cardiovascular study of people from the Framingham city in Massachusetts, USA. To evaluate the performance of the classifiers, various evaluation metrics including accuracy, precision, recall and f1 score have been used. According to our results, the best accuracy was achieved by logistic regression, random forest, majority voting, weighted average and bagging classifiers but the highest accuracy among these was achieved using weighted average ensemble classifier.
Keywords:
References
Ashraf, M., Zaman, M., & Ahmed, M. (2018a). Using ensemble stackingc method and base classifiers to ameliorate prediction accuracy of pedagogical data. Procedia Computer Science, 132(Iccids), 1021–1040. https://doi.org/10.1016/j.procs.2018.05.018 DOI: https://doi.org/10.1016/j.procs.2018.05.018
Ashraf, M., Zaman, M., & Ahmed, M. (2018b). Performance analysis and different subject combinations: an empirical and analytical discourse of educational data mining. Proceedings of the 8th International Conference Confluence 2018 on Cloud Computing, Data Science and Engineering, Confluence 2018 (pp. 287–292). IEEE. https://doi.org/10.1109/CONFLUENCE.2018.8442633 DOI: https://doi.org/10.1109/CONFLUENCE.2018.8442633
Ashraf, M., Zaman, M., & Ahmed, M. (2019). To ameliorate classification accuracy using ensemble vote approach and base classifiers. In Advances in Intelligent Systems and Computing (vol 813). Springer Singapore. https://doi.org/10.1007/978-981-13-1498-8_29 DOI: https://doi.org/10.1007/978-981-13-1498-8_29
Ashraf, M., Zaman, M., & Ahmed, M. (2020). An intelligent prediction system for educational data mining based on ensemble and filtering approaches. Procedia Computer Science, 167(2019), 1471–1483. https://doi.org/10.1016/j.procs.2020.03.358 DOI: https://doi.org/10.1016/j.procs.2020.03.358
Bashir, S., Khan, Z. S., Hassan Khan, F., Anjum, A., & Bashir, K. (2019). Improving Heart Disease Prediction Using Feature Selection Approaches. Proceedings of 2019 16th International Bhurban Conference on Applied Sciences and Technology, (pp. 619–623). IEEE. https://doi.org/10.1109/IBCAST.2019.8667106 DOI: https://doi.org/10.1109/IBCAST.2019.8667106
Benhar, H., Idri, A., & Fernández-Alemán, J. L. (2019). A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery. Journal of Medical Systems, 43(1), 17. https://doi.org/10.1007/s10916-018-1134-z DOI: https://doi.org/10.1007/s10916-018-1134-z
Cardiovascular (Heart) Diseases: Types and Treatments. (n.d.). Retrieved January 8, 2022 from https://www.webmd.com/heart-disease/guide/diseases-cardiovascular
Chandra Shekar, K., Chandra, P., & Venugopala Rao, K. (2019). An Ensemble Classifier Characterized by Genetic Algorithm with Decision Tree for the Prophecy of Heart Disease. In Lecture Notes in Networks and Systems (Vol. 74). Springer Singapore. https://doi.org/10.1007/978-981-13-7082-3_2 DOI: https://doi.org/10.1007/978-981-13-7082-3_2
Coronary artery disease: Causes, symptoms, and treatment. (n.d.). Retrieved December 22, 2021 from https://www.medicalnewstoday.com/articles/184130
Coronary heart disease – NHS. (n.d.). Retrieved December 22, 2021 from https://www.nhs.uk/conditions/coronaryheart-disease/
Coronary Heart Disease | NHLBI, NIH. (n.d.). Retrieved December 22, 2021 from https://www.nhlbi.nih.gov/healthtopics/coronary-heart-disease
Data Jabberwocky: Decision Tree Mathematical Formulation. (n.d.). Retrieved December 26, 2021 from http://fiascodata.blogspot.com/2018/08/decision-tree-mathematical-formulation.html
Decision Tree – GeeksforGeeks. (n.d.). Retrieved December 26, 2021 from https://www.geeksforgeeks.org/decisiontree/
Decision Trees in Machine Learning | by Prashant Gupta | Towards Data Science. (n.d.). Retrieved December 26, 2021 from https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
Dun, B., Wang, E., & Majumder, S. (2016). Heart Disease Diagnosis on Medical Data Using Ensemble Learning. Computer Science, 1(1), 1–5.
El-Shafeiy, E. A., El-Desouky, A. I., & Elghamrawy, S. M. (2018). Prediction of Liver Diseases Based on Machine Learning Technique for Big Data. Advances in Intelligent Systems and Computing, 723, 362–374. https://doi.org/10.1007/978-3-319-74690-6_36 DOI: https://doi.org/10.1007/978-3-319-74690-6_36
Entropy: How Decision Trees Make Decisions | by Sam T | Towards Data Science. (n.d.). Retrieved December 26, 2021 from https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
Entropy and Information Gain in Decision Trees | by Jeremiah Lutes | Towards Data Science. (n.d.). Retrieved December 26, 2021 from https://towardsdatascience.com/entropy-and-information-gain-in-decisiontrees-c7db67a3a293
Framingham Heart Study. (n.d.). Retrieved September 9, 2021 from https://framinghamheartstudy.org/
Gokulnath, C. B., & Shantharajah, S. P. (2019). An optimized feature selection based on genetic approach and support vector machine for heart disease. Cluster Computing, 22(s6), 14777–14787. https://doi.org/10.1007/s10586-018-2416-4 DOI: https://doi.org/10.1007/s10586-018-2416-4
Heart disease – Symptoms and causes - Mayo Clinic. (n.d.). Retrieved January 8, 2022 from
https://www.mayoclinic.org/diseases-conditions/heart-disease/symptoms-causes/syc-20353118
K-Nearest Neighbor(KNN) Algorithm for Machine Learning - Javatpoint. (n.d.). Retrieved December 26, 2021 from https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine Learning and Data Mining Methods in Diabetes Research. Computational and Structural Biotechnology Journal, 15, 104–116. https://doi.org/10.1016/J.CSBJ.2016.12.005 DOI: https://doi.org/10.1016/j.csbj.2016.12.005
Latha, C. B. C., & Jeeva, S. C. (2019). Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Informatics in Medicine Unlocked, 16, 100203. https://doi.org/10.1016/j.imu.2019.100203 DOI: https://doi.org/10.1016/j.imu.2019.100203
Less than $1: How WHO thinks that can save 7 million lives. (n.d.). Retrieved January 9, 2022 from https://www.downtoearth.org.in/news/health/less-than-1-how-who-thinks-that-can-save-7-million-lives80679
Logistic Regression - an overview | ScienceDirect Topics. (n.d.). Retrieved December 26, 2021 from https://www.sciencedirect.com/topics/computer-science/logistic-regression
Mir, N. M., Khan, S., Butt, M. A., & Zaman, M. (2016). An experimental evaluation of Bayesian classifiers applied to intrusion detection. Indian Journal of Science and Technology, 9(12), 1–13. https://doi.org/10.17485/ijst/2016/v9i12/86291 DOI: https://doi.org/10.17485/ijst/2016/v9i12/86291
Mohd, R., Butt, M. A., & Baba, M. Z. (2020). GWLM–NARX: Grey Wolf Levenberg–Marquardt-based neural network for rainfall prediction. Data Technologies and Applications, 54(1), 85–102. https://doi.org/10.1108/DTA-08-2019-0130 DOI: https://doi.org/10.1108/DTA-08-2019-0130
Mohd, R., Butt, M. A., & Baba, M. Z. (2019). SALM-NARX: Self adaptive LM-based NARX model for the prediction of rainfall. Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018 (pp. 580–585). IEEE. https://doi.org/10.1109/ISMAC.2018.8653747 DOI: https://doi.org/10.1109/I-SMAC.2018.8653747
Multilayer Perceptron – an overview | ScienceDirect Topics. (n.d.). Retrieved December 26, 2021 from https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron
Multinomial Naive Bayes Explained: Function, Advantages & Disadvantages, Applications in 2021 | upGrad blog. (n.d.). Retrieved December 26, 2021 from https://www.upgrad.com/blog/multinomial-naive-bayesexplained/
Otoom, A. F., Abdallah, E. E., Kilani, Y., & Kefaye, A. (2015). Effective Diagnosis and Monitoring of Heart Disease. International Journal of Software Engineering and Its Applications, 9(1), 143–156.
Riyaz, L., Butt, M. A., Zaman, M., & Ayob, O. (2022). Heart Disease Prediction Using Machine Learning Techniques: A Quantitative Review. Advances in Intelligent Systems and Computing (pp. 81–94). Springer. https://doi.org/10.1007/978-981-16-3071-2_8 DOI: https://doi.org/10.1007/978-981-16-3071-2_8
Sakai, K., & Yamada, K. (2019). Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Japanese Journal of Radiology, 37, 34–72. https://doi.org/10.1007/s11604-018-0794-4 DOI: https://doi.org/10.1007/s11604-018-0794-4
Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F., Augimeri, A., Lopez, M., Arabia, G., Morelli, M., Gilardi, M. C., & Quattrone, A. (2014). Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. Journal of Neuroscience Methods, 222, 230–237. https://doi.org/10.1016/J.JNEUMETH.2013.11.016 DOI: https://doi.org/10.1016/j.jneumeth.2013.11.016
Shinde, R., Arjun, S., Patil, P., & Waghmare, P. J. (2015). An Intelligent Heart Disease Prediction System Using K-Means Clustering and Naïve Bayes Algorithm. International Journal of Computer Science and Information Technolog, 6(1), 637–639.
Takci, H. (2018). Improvement of heart attack prediction by the feature selection methods. Turkish Journal of Electrical Engineering and Computer Sciences, 26(1), 1–10. https://doi.org/10.3906/elk-1611-235 DOI: https://doi.org/10.3906/elk-1611-235
Thaiparnit, S., Kritsanasung, S., & Chumuang, N. (2019). A Classification for Patients with Heart Disease Based on Hoeffding Tree. JCSSE 2019 – 16th International Joint Conference on Computer Science and Software Engineering: Knowledge Evolution Towards Singularity of Man-Machine Intelligence (pp. 352–357). IEEE. https://doi.org/10.1109/JCSSE.2019.8864158 DOI: https://doi.org/10.1109/JCSSE.2019.8864158
Wei, S., Zhao, X., & Miao, C. (2018). A comprehensive exploration to the machine learning techniques for diabetes identification. IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings, (pp. 291–295). IEEE. DOI: https://doi.org/10.1109/WF-IoT.2018.8355130
https://doi.org/10.1109/WF-IOT.2018.8355130 DOI: https://doi.org/10.1109/WF-IoT.2018.8355130
Wu, C. C., Yeh, W. C., Hsu, W. D., Islam, M. M., Nguyen, P. A., Poly, T. N., Wang, Y. C., Yang, H. C., & Li, Y. C. (2019). Prediction of fatty liver disease using machine learning algorithms. Computer Methods and Programs in Biomedicine, 170, 23–29. https://doi.org/10.1016/J.CMPB.2018.12.032 DOI: https://doi.org/10.1016/j.cmpb.2018.12.032
Zaman, M., Kaul, S., & Ahmed, M. (2020). Analytical comparison between the information gain and gini index using historical geographical data. International Journal of Advanced Computer Science and Applications, 11(5), 429–440. https://doi.org/10.14569/IJACSA.2020.0110557 DOI: https://doi.org/10.14569/IJACSA.2020.0110557
Zaman, M., Quadri, S. M. K., & Butt, M. A. (2012). Information translation: A practitioners approach. Lecture Notes in Engineering and Computer Science, 1, 45–47.
Article Details
Abstract views: 484
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
