STRENGTH ANALYSIS OF A PROTOTYPE COMPOSITE HELICOPTER ROTOR BLADE SPAR

Rafał KLIZA

r.kliza@pollub.pl
* Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin (Poland)

Karol ŚCISŁOWSKI


* Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin (Poland)

Ksenia SIADKOWSKA


* Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin (Poland)

Jacek PADYJASEK


Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin (Poland)

Mirosław WENDEKER


Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin (Poland)

Abstract

This paper investigates the strenght of a conceptual main rotor blade dedicated to an unmanned helicopter. The blade is made of smart materials in order to optimize the efficiency of the aircraft by increasing its aerodynamic performance. This purpose was achieved by performing a series of strength calculations for the blade of a prototype main rotor used in an unmanned helicopter. The calculations were done with the Finite Element Method (FEM) and software like CAE (Computer-Aided Engineering) which uses advanced techniques of computer modeling of load in composite structures. Our analysis included CAD (Computer-Aided Design) modeling the rotor blade, importing the solid model into the CAE software, defining the simulation boundary conditions and performing strength calculations of the blade spar for selected materials used in aviation, i.e. fiberglass and carbon fiber laminate. This paper presents the results and analysis of the numerical calculations.


Keywords:

FEM, composite spar, main rotor blade, carbon fiber, strength analysis

Azad, S., Mirghaderi, S. R., & Epackachi, S. (2021). Numerical investigation of steel and composite beam-toencased composite column connection via a through-plate. Structures, 31(December 2020), 14–28. https://doi.org/10.1016/j.istruc.2021.01.040
DOI: https://doi.org/10.1016/j.istruc.2021.01.040   Google Scholar

Balaskó, M., Sváb, E., Molnár, G., & Veres, I. (2005). Classification of defects in honeycomb composite structure of helicopter rotor blades. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 542(1–3), 45–51. https://doi.org/10.1016/j.nima.2005.01.010
DOI: https://doi.org/10.1016/j.nima.2005.01.010   Google Scholar

Debski, H., Rozylo, P., & Wysmulski, P. (2020). Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures, 252, 112716. https://doi.org/10.1016/j.compstruct.2020.112716
DOI: https://doi.org/10.1016/j.compstruct.2020.112716   Google Scholar

Grodzki, W., Łukasiewicz, A., & Leśniewska, K. (2015). Modelling of UAV’S Composite Structures and Prediction of Safety Factor. Applied Computer Science, 11(3), 67–75.
  Google Scholar

Jaafar, M., Makich, H., & Nouari, M. (2021). A new criterion to evaluate the machined surface quality of the Nomex® honeycomb materials. Journal of Manufacturing Processes, 69, 567–582. https://doi.org/10.1016/j.jmapro.2021.07.062
DOI: https://doi.org/10.1016/j.jmapro.2021.07.062   Google Scholar

Kang, Z., Shi, Z., Lei, Y., Xie, Q., & Zhang, J. (2021). Effect of the surface morphology on the bonding performance of metal/composite hybrid structures. International Journal of Adhesion and Adhesives, 111, 102944. https://doi.org/10.1016/j.ijadhadh.2021.102944
DOI: https://doi.org/10.1016/j.ijadhadh.2021.102944   Google Scholar

Karny, M. (2017). The influence of the fastener hole preparation method on the fastener pull-through process in a carbon composite. Transactions on Aerospace Research, 1(246), 45–53. https://doi.org/10.2478/tar2017-0005
DOI: https://doi.org/10.2478/tar-2017-0005   Google Scholar

Klochkov, N., Zverkov, I., Kurlaev, N., & Ahmed, M. S. (2021). Improvement of non-destructive testing methods in diagnostics of composite honeycomb structures of civil aircraft. AIP Conference Proceedings, 2402, 020045. https://doi.org/10.1063/5.0071712
DOI: https://doi.org/10.1063/5.0071712   Google Scholar

Li, X., Wang, B., Xu, D., Wang, B., Dong, W., & Li, M. (2021). Super-high bonding strength of polyphenylene sulfide-aluminum alloy composite structure achieved by facile molding methods. Composites Part B: Engineering, 224, 109204. https://doi.org/10.1016/j.compositesb.2021.109204
DOI: https://doi.org/10.1016/j.compositesb.2021.109204   Google Scholar

Megson, T. H. G. (2010). Introduction to Aircraft Structural Analysis. In Introduction to Aircraft Structural Analysis. Elsevier. https://doi.org/10.1016/C2009-0-62169-3
DOI: https://doi.org/10.1016/C2009-0-62169-3   Google Scholar

Michalski, M., & Krauze, W. (2019). Influence of honeycomb core stabilization on composite sandwich structure geometry. Transactions on Aerospace Research, 3(256), 1–13. https://doi.org/10.2478/tar-2019-0013
DOI: https://doi.org/10.2478/tar-2019-0013   Google Scholar

Peng, X. L., & Bargmann, S. (2021). A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion. International Journal of Mechanical Sciences, 190, 106021. https://doi.org/10.1016/j.ijmecsci.2020.106021
DOI: https://doi.org/10.1016/j.ijmecsci.2020.106021   Google Scholar

Puchała, K., Jachimowicz, J., & Szymczyk, E. (2014). Analysis of load transfer into composite structure. Applied Computer Science, 10, 86–94.
  Google Scholar

Rasuo, B. (2011). Experimental Techniques for Evaluation of Fatigue Characteristics of Laminated Constructions from Composite Materials: Full-Scale Testing of the Helicopter Rotor Blades. Journal of Testing and Evaluation, 39(2), 237–242. https://doi.org/10.1520/JTE102768
DOI: https://doi.org/10.1520/JTE102768   Google Scholar

Rathod, S., Tiwari, G., & Chougale, D. (2019). Ballistic performance of ceramic-metal composite structures. Materials Today: Proceedings, 41, 1125–1129. https://doi.org/10.1016/j.matpr.2020.08.759
DOI: https://doi.org/10.1016/j.matpr.2020.08.759   Google Scholar

Różyło, P., & Wrzesińska, K. (2016). Numerical Analysis of Buckling and Critical Forces in a Closed Section Composite Profile. Applied Computer Science, 12(2), 54–62.
  Google Scholar

Shahani, A. R., & Mohammadi, S. (2015). Damage tolerance approach for analyzing a helicopter main rotor blade. Engineering Failure Analysis, 57, 56–71. https://doi.org/10.1016/j.engfailanal.2015.07.025
DOI: https://doi.org/10.1016/j.engfailanal.2015.07.025   Google Scholar

Siadkowska, K., & Borowiec, P. (2021). Strength analysis of the conceptual model of a main rotor blade spar with actuators. Journal of Physics: Conference Series, 1736(1), 012021. https://doi.org/10.1088/1742-6596/1736/1/012021
DOI: https://doi.org/10.1088/1742-6596/1736/1/012021   Google Scholar

Skiba, K. (2019). Designing and FEM simulation of the helicopter rotor and hub. IOP Conference Series: Materials Science and Engineering, 710, 012003. https://doi.org/10.1088/1757-899X/710/1/012003
DOI: https://doi.org/10.1088/1757-899X/710/1/012003   Google Scholar

Skiba, K., Raczynski, R., Kliza, R., & Wendeker, M. (2021). Strength analysis of a propulsion shaft dedicated for the main rotor test bench. Journal of Physics: Conference Series, 1736(1), 012052. https://doi.org/10.1088/1742-6596/1736/1/012052
DOI: https://doi.org/10.1088/1742-6596/1736/1/012052   Google Scholar

Sukmaji, I. C., Wijang, W. R., Andri, S., Bambang, K., & Teguh, T. (2017). Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car. AIP Conference Proceedings, 1788, 030056. https://doi.org/10.1063/1.4968309
DOI: https://doi.org/10.1063/1.4968309   Google Scholar

Szymański, R. (2020). Non-destructive testing of thermoplastic carbon composite structures. Transactions on Aerospace Research, 1(258), 34–52. https://doi.org/10.2478/tar-2020-0003
DOI: https://doi.org/10.2478/tar-2020-0003   Google Scholar

Taymaz, H. A. (2017). Optimization of Composite Couplings in Helicopter Rotor Blade Spar Using Hybrid Particle Swarm-Gradient Algorithm. Bilge, 1(2), 71–78.
  Google Scholar

Teter, A., & Gawryluk, J. (2016). Experimental modal analysis of a rotor with active composite blades. Composite Structures, 153, 451–467. https://doi.org/10.1016/j.compstruct.2016.06.013
DOI: https://doi.org/10.1016/j.compstruct.2016.06.013   Google Scholar

Visweswaraiah, S. B., Ghiasi, H., Pasini, D., & Lessard, L. (2013). Multi-objective optimization of a composite rotor blade cross-section. Composite Structures, 96, 75–81. https://doi.org/10.1016/j.compstruct.2012.09.031
DOI: https://doi.org/10.1016/j.compstruct.2012.09.031   Google Scholar

Waghmare, S., Shelare, S., Aglawe, K., & Khope, P. (2021). Materials Today: Proceedings A mini review on fibre reinforced polymer composites. Materials Today: Proceedings, in press. https://doi.org/10.1016/j.matpr.2021.10.379
DOI: https://doi.org/10.1016/j.matpr.2021.10.379   Google Scholar

Wysmulski, P., Debski, H., & Falkowicz, K. (2020). Stability analysis of laminate profiles under eccentric load. Composite Structures, 238, 111944. https://doi.org/10.1016/j.compstruct.2020.111944
DOI: https://doi.org/10.1016/j.compstruct.2020.111944   Google Scholar

Download


Published
2022-03-30

Cited by

KLIZA, R., ŚCISŁOWSKI, K., SIADKOWSKA, K., PADYJASEK, J., & WENDEKER, M. (2022). STRENGTH ANALYSIS OF A PROTOTYPE COMPOSITE HELICOPTER ROTOR BLADE SPAR. Applied Computer Science, 18(1), 5–19. https://doi.org/10.23743/acs-2022-01

Authors

Rafał KLIZA 
r.kliza@pollub.pl
* Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin Poland

Authors

Karol ŚCISŁOWSKI 

* Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin Poland

Authors

Ksenia SIADKOWSKA 

* Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin Poland

Authors

Jacek PADYJASEK 

Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin Poland

Authors

Mirosław WENDEKER 

Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin Poland

Statistics

Abstract views: 494
PDF downloads: 174


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.