DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS

Marcin BADUROWICZ


Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Lublin (Poland)

Abstract

In the paper, the authors are presenting the outcome of web scraping software allowing for the automated classification of source code. The software system was prepared for a discussion forum for software developers to find fragments of source code that were published without marking them as code snippets. The analyzer software is using a Machine Learning binary classification model for differentiating between a programming language source code and highly technical text about software. The analyzer model was prepared using the AutoML subsystem without human intervention and fine-tuning and its accuracy in a described problem exceeds 95%. The analyzer based on the automatically generated model has been deployed and after the first year of continuous operation, its False Positive Rate is less than 3%. The similar process may be introduced in document management in software development process, where automatic tagging and search for code or pseudo-code may be useful for archiving purposes.


Keywords:

source code, binary classification, text classification, AutoML

programmers.net. (2000). Forum dyskusyjne dla programistów. https://4programmers.net
  Google Scholar

Ahmed, Z., Amizadeh, S., Bilenko, M., Carr, R., Chin, W.-S., Dekel, Y., Dupre, X., Eksarevskiy, V., Filipi, S., Finley, T., Goswami, A., Hoover, M., Inglis, S., Interlandi, M., Kazmi, N., Krivosheev, G., Luferenko, P., Matantsev, I., Matusevych, S., Moradi, S., Nazirov, G., Ormont, J., Oshri, G., Pagnoni, A., Parmar, J., Roy, P., Siddiqui, M. Z., Weimer, M., Zahirazami, S., and Zhu, Y. (2019). Machine Learning at Microsoft with ML.NET. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2448–2458). Association for Computing Machinery. https://doi.org/10.1145/3292500.3330667
DOI: https://doi.org/10.1145/3292500.3330667   Google Scholar

Alreshedy, K., Dharmaretnam, D., German, D. M., Srinivasan, V., & Gulliver, T. A. (2018). SCC: Automatic Classification of Code Snippets. arXiv:1809.07945. https://doi.org/10.48550/arXiv.1809.07945
DOI: https://doi.org/10.1109/SCAM.2018.00031   Google Scholar

Badurowicz, M. (2020). ktos/Eleia: 4programmers.net bot for nagging users when their code in post is not marked as code. http://github.com/ktos/eleia
  Google Scholar

Van Dam, J. K., & Zaytsev, V. (2016). Software Language Identification with Natural Language Classifiers. 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER) (pp. 624–628). IEEE. https://doi.org/10.1109/SANER.2016.92
DOI: https://doi.org/10.1109/SANER.2016.92   Google Scholar

Gilda, S. (2017). Source code classification using Neural Networks. 2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE) (1–6). IEEE. https://doi.org/10.1109/JCSSE.2017.8025917
DOI: https://doi.org/10.1109/JCSSE.2017.8025917   Google Scholar

GitHub Copilot – Your AI pair programmer. (n.d.). Retrieved January 22, 2021 from https://copilot.github.com
  Google Scholar

He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212, 106622. https://doi.org/https://doi.org/10.1016/j.knosys.2020.106622
DOI: https://doi.org/10.1016/j.knosys.2020.106622   Google Scholar

Khasnabish, J. N., Sodhi, M., Deshmukh, J., & Srinivasaraghavan, G. (2014). Detecting Programming Language from Source Code Using Bayesian Learning Techniques. In P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition (pp. 513–522). Springer International Publishing.
DOI: https://doi.org/10.1007/978-3-319-08979-9_39   Google Scholar

Kłosowski, G., Kulisz, M., Lipski, J., Maj, M., & Bialek, R. (2021). The Use of Transfer Learning with Very Deep Convolutional Neural Network in Quality Management. European Research Studies Journal, XXIV(Special Issue 2), 253–263. https://doi.org/10.35808/ersj/2222
DOI: https://doi.org/10.35808/ersj/2222   Google Scholar

Kulisz, M., Kujawska, J., Przysucha, B., & Cel, W. (2021). Forecasting Water Quality Index in Groundwater Using Artificial Neural Network. Energies, 14(18), 5875. https://doi.org/10.3390/en14185875
DOI: https://doi.org/10.3390/en14185875   Google Scholar

LeClair, A., Eberhart, Z., & McMillan, C. (2018). Adapting Neural Text Classification for Improved Software Categorization. 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME) (461–472). IEEE. https://doi.org/10.1109/ICSME.2018.00056
DOI: https://doi.org/10.1109/ICSME.2018.00056   Google Scholar

Linguist. (n.d.). Retrieved January 22, 2022 from https://github.com/github/linguist
  Google Scholar

Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020). Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials, 13(23), 5419. https://doi.org/10.3390/ma13235419
DOI: https://doi.org/10.3390/ma13235419   Google Scholar

Madani, N., Guerrouj, L., Di Penta, M., Gueheneuc, Y.-G., & Antoniol, G. (2010). Recognizing Words from Source Code Identifiers Using Speech Recognition Techniques. 2010 14th European Conference on Software Maintenance and Reengineering (pp. 68–77). IEEE. https://doi.org/10.1109/CSMR.2010.31
DOI: https://doi.org/10.1109/CSMR.2010.31   Google Scholar

Ohashi, H., & Watanobe, Y. (2019). Convolutional Neural Network for Classification of Source Codes. 2019 IEEE 13th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC) (pp. 194–200). IEEE. https://doi.org/10.1109/MCSoC.2019.00035
DOI: https://doi.org/10.1109/MCSoC.2019.00035   Google Scholar

Pygments - Python syntax highlighter. (n.d.). Retrieved January 22, 2021 from https://pygments.org
  Google Scholar

Sobaszek, Ł., Gola, A., & Kozłowski, E. (2020). Predictive Scheduling with Markov Chains and ARIMA Models. Applied Sciences, 10(17), 6121. https://doi.org/10.3390/app10176121
DOI: https://doi.org/10.3390/app10176121   Google Scholar

Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an Artificial Neural Network in the Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with Imprecise Adhesive Mix Ratios. Materials, 15(3), 721. https://doi.org/10.3390/ma15030721
DOI: https://doi.org/10.3390/ma15030721   Google Scholar

Ugurel, S., Krovetz, R., & Giles, C. L. (2002). What’s the Code? Automatic Classification of Source Code Archives. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 632–638). ACM Digital Library. https://doi.org/10.1145/775047.775141
DOI: https://doi.org/10.1145/775047.775141   Google Scholar

Wever, M., Tornede, A., Mohr, F., & Hullermeier, E. (2021). AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 43(09), 3037–3054. https://doi.org/10.1109/TPAMI.2021.3051276
DOI: https://doi.org/10.1109/TPAMI.2021.3051276   Google Scholar

Yin, P., Deng, B., Chen, E., Vasilescu, B., & Neubig, G. (2018). Learning to Mine Aligned Code and Natural Language Pairs from Stack Overflow. International Conference on Mining Software Repositories (pp. 476–486). ACM Digital Library. https://doi.org/10.1145/3196398.3196408
DOI: https://doi.org/10.1145/3196398.3196408   Google Scholar

Download


Published
2022-03-30

Cited by

BADUROWICZ, M. (2022). DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS. Applied Computer Science, 18(1), 89–98. https://doi.org/10.35784/acs-2022-7

Authors

Marcin BADUROWICZ 

Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, Lublin Poland

Statistics

Abstract views: 206
PDF downloads: 108


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.