THE POSSIBILITY OF USING WOOD FIBER MATS IN PRODUCTS MANUFACTURING MADE OF POLYMER COMPOSITES BASED ON NUMERICAL SIMULATIONS

Wiesław FRĄCZ

wf@prz.edu.pl
* Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów (Poland)

Grzegorz JANOWSKI


* Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów (Poland)

Grażyna RYZIŃSKA


Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów (Poland)

Abstract

In this work the calculations for predicting the properties of wood fiber mats – polyester resin composite using numerical homogenization method were performed. For this purpose, the microstructural strength properties were calculated using DIGIMAT FE commercial code. In addition, for comparative purposes a calculation of polyester resin - glass fiber composites was conducted. This allowed to compare the properties of two types of compositions. In addition, the obtained strength properties were used to simulate the work of product made of these composites. This study was performed using the Ansys commercial code. Usability of the polyester resin - wood fiber mat composite and knowledge of its properties will allow to find a correct application of this composite type and can provide an alternative way to other polymeric resin reinforced by mat.


Keywords:

GFPR composite, wood-fiber-polyester resin composites, homogenization methods, Digimat software

Abdulle, A. (2013). Numerical homogenization methods (No. EPFL-ARTICLE-184958). Autodesk Moldflow Insight (2013) – material database.
  Google Scholar

Aziz, S. H., Ansell, M. P., Clarke, S. J., & Panteny, S. R. (2005). Modified polyester resins for natural fibre composites, Composites Science and Technology, 65, 525–535. https://doi.org/10.1016/j.compscitech.2004.08.005
DOI: https://doi.org/10.1016/j.compscitech.2004.08.005   Google Scholar

Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2
DOI: https://doi.org/10.1016/0045-7825(88)90086-2   Google Scholar

Campilho, R.D.S.G. (2015). Natural Fiber Composites. Boca Raton: CRC Press.
DOI: https://doi.org/10.1201/b19062   Google Scholar

Doghri, I., & Tinel, L. (2006). Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Computer methods in applied mechanics and engineering, 195(13), 1387–1406. https://doi.org/10.1016/j.cma.2005.05.041
DOI: https://doi.org/10.1016/j.cma.2005.05.041   Google Scholar

Dominguez, R. J., & Rice, D. M. (1983). High strength continuous glass strand – polyurethane composites by the reaction injection molding process. Polymer composites, 4, 185–189. https://doi.org/10.1002/pc.750040310
DOI: https://doi.org/10.1002/pc.750040310   Google Scholar

e-Xstream engineering (2016). DIGIMAT - User’s manual, MSC Software Belgium SA, MontSaint-Guibert.
  Google Scholar

Frącz, W., Janowski, G., & Ryzińska, G. (2017). The strenght analysis of GFRP composite product taking into account its heterogenic structure for different reinforcements. Composites Theory and Practice, 2, 103–108.
  Google Scholar

Hedley, C. W. (1994). Mold filling parameters in resin transfer molding of composites (doctoral dissertation). Bozeman: Montana State University.
  Google Scholar

Ho, M., Wang, H., Lee, J., Ho, C., Lau K., Leng J., & Hui, D. (2011). Critical factors on manufacturing processes of natural fibre composites. Composites: Part B, 43, 3549-3562. https://doi.org/10.1016/j.compositesb.2011.10.001
DOI: https://doi.org/10.1016/j.compositesb.2011.10.001   Google Scholar

Kim, D. S., & Macosko, C. W. (2000). Reaction injection molding process of glass fiber reinforced polyurethane composites. Polymer Engineering & Science, 40(10), 2205–2216. https://doi.org/10.1002/pen.11352
DOI: https://doi.org/10.1002/pen.11352   Google Scholar

Klyosov, A. A. (2007). Wood-Plastic Composites. New Jersey: John Wiley & Sons.
DOI: https://doi.org/10.1002/9780470165935   Google Scholar

Kubit, A., Bucior, M., & Zielecki, W. (2016). The impact of the multiwall carbon nanotubes on the fatigue properties of adhesive joints of 2024-T3 aluminium alloy subjected to peel. Procedia Structural Integrity, 2, 334–341. https://doi.org/10.1016/j.prostr.2016.06.043
DOI: https://doi.org/10.1016/j.prostr.2016.06.043   Google Scholar

Kutnar, A., & Muthu S. S. (2016). Environmental Impacts of Traditional and Innovative Forestbased Bioproducts, Environmental Footprints and Eco-design of Products and Processes, Singapore: Springer.
DOI: https://doi.org/10.1007/978-981-10-0655-5   Google Scholar

Rowell, R. M. (2013). Handbook of Wood Chemistry and Wood Composites, Second Edition. Boca Raton: CRC Press.
DOI: https://doi.org/10.1201/b12487   Google Scholar

Thakur, V. K., & Thakur, M. K. (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117, https://doi.org/10.1016/j.carbpol.2014.03.039
DOI: https://doi.org/10.1016/j.carbpol.2014.03.039   Google Scholar

Trevino, L., Rupel, K., Young, W. B., Liou, M. J., & Lee, L. J. (1991). Analysis of resin injection molding in molds with preplaced fiber mats. I: Permeability and compressibility measurements. Polymer composites, 12, 20–29. https://doi.org/10.1002/pc.750120105
DOI: https://doi.org/10.1002/pc.750120105   Google Scholar

Zielecki, W., Kubit, A., Kluz, R., & Trzepieciński, T. (2017). Investigating the influence of the chamfer and fillet on the high-cyclic fatigue strength of adhesive joints of steel parts. Journal of Adhesion Science and Technology, 31(6), 627–644. https://doi.org/10.1080/01694243.2016.1229521
DOI: https://doi.org/10.1080/01694243.2016.1229521   Google Scholar

Download


Published
2017-12-30

Cited by

FRĄCZ, W., JANOWSKI, G., & RYZIŃSKA, G. (2017). THE POSSIBILITY OF USING WOOD FIBER MATS IN PRODUCTS MANUFACTURING MADE OF POLYMER COMPOSITES BASED ON NUMERICAL SIMULATIONS. Applied Computer Science, 13(4), 65–75. https://doi.org/10.23743/acs-2017-30

Authors

Wiesław FRĄCZ 
wf@prz.edu.pl
* Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów Poland

Authors

Grzegorz JANOWSKI 

* Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów Poland

Authors

Grażyna RYZIŃSKA 

Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów Poland

Statistics

Abstract views: 77
PDF downloads: 34


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.