NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Diabetes Mellitus (DM) is a persistent metabolic disorder which is characterized by increased blood glucose level in the blood stream. Initially, DM occurs while the insulin secretion in the pancreas has a disability to secrete or to use hormone for the metabolic process. Moreover, there are different types of DM depending on the physiological process, and the types include Type1 DM, Type2 DM and Gestational DM. Electrocardiography (ECG) waves are used to detect the abnormal heartbeats and cannot directly detect DM, but the wave abnormality can indicate the possibility and presence of DM. Whereas the Photoplethysmography (PPG) signals are a non-invasive method used to detect changes in blood volume that can monitor BG changes. Furthermore, the detection and classification of DM using PPG and ECG can involve analyzing the functional performance of these modalities. By extracting the features like R wave (W1) and QRS complex (W2) in the ECG signals and Pulse Width (S1) and Pulse Amplitude Variation (S2) can detect DM and can be classified into DM and Non-DM. The authors propose a Novel architecture in the basis of Encoder Decoder structure named as Obstructive Encoder Decoder module. This module extracts the specific features and the proposed novel Obstructive Erasing Module remove the remaining artifacts and then the extracted features are fed into the Multi-Uni-Net for the fusion of the two modalities and the fused image is classified using EXplainable Machine Learning (EX-ML). From this classification the performance metrics like Accuracy, Precision, Recall, F1-Score and AUC can be determined.
Keywords:
References
Ahamed, A. K. A., Lalitha, K., Saravanan, S., & Muthu Kumar, S. (2023). Enhanced Deep Learning based non-invasive anomaly detection of ECG signals with emphasis on diabetes. International Journal of Intelligent Systems and Applications in Engineering, 11(6s), 284-294.
Cordeiro, R., Karimian, N., & Park, Y. (2021). Hyperglycemia identification using ECG in Deep Learning era. Sensors, 21(18), 6263. https://doi.org/10.3390/s21186263 DOI: https://doi.org/10.3390/s21186263
Dave, D., Vyas, K., Branan, K., McKay, S., DeSalvo, D. J., Gutierrez-Osuna, R., Cote, G. L., & Erraguntla, M. (2024). Detection of hypoglycemia and hyperglycemia using noninvasive wearable sensors: Electrocardiograms and accelerometry. Journal of Diabetes Science and Technology, 18(2), 351–362. https://doi.org/10.1177/19322968221116393 DOI: https://doi.org/10.1177/19322968221116393
Gupta, S., Singh, A., Sharma, A., & Tripathy, R. K. (2022). dSVRI: A PPG-based novel feature for early diagnosis of type-II diabetes mellitus. IEEE Sensors Letters, 6(9), 1-4. https://doi.org/10.1109/LSENS.2022.3203609 DOI: https://doi.org/10.1109/LSENS.2022.3203609
Hina, A., & Saadeh, W. (2022). A 186μW photoplethysmography-based noninvasive glucose sensing SoC. IEEE Sensors Journal, 22(14), 14185-14195. https://doi.org/10.1109/JSEN.2022.3180893 DOI: https://doi.org/10.1109/JSEN.2022.3180893
Jain, A., Verma, A., & Verma, A. K. (2023). Non-invasive and automatic identification of diabetes using ECG signals. International Journal of Electrical and Electronics Research, 11(2), 418-425. https://doi.org/10.37391/ijeer.110223 DOI: https://doi.org/10.37391/ijeer.110223
Khan, M., Kumar Singh, B., & Nirala, N. (2023). Expert diagnostic system for detection of hypertension and diabetes mellitus using discrete wavelet decomposition of photoplethysmogram signal and machine learning technique. Medicine in Novel Technology and Devices, 19, 100251. https://doi.org/10.1016/j.medntd.2023.100251 DOI: https://doi.org/10.1016/j.medntd.2023.100251
Kulkarni, A. R., Patel, A. A., Pipal, K. V., Jaiswal, S. G., Jaisinghani, M. T., Thulkar, V., Gajbhiye, L., Gondane, P., Patel, A. B., Mamtani, M., & Kulkarni, H. (2023). Machine-Learning algorithm to non-invasively detect diabetes and pre-diabetes from electrocardiogram. BMJ Innovations, 9(1), 32-42. https://doi.org/10.1136/bmjinnov-2021-000759 DOI: https://doi.org/10.1136/bmjinnov-2021-000759
Lee, P.-L., Wang, K.-W., & Hsiao, C.-Y. (2023). A noninvasive blood glucose estimation system using dual-channel PPGs and pulse-arrival velocity. IEEE Sensors Journal, 23(19), 23570-23582. https://doi.org/10.1109/JSEN.2023.3306343 DOI: https://doi.org/10.1109/JSEN.2023.3306343
Li, J., Ma, J., Omisore, O. M., Liu, Y., Tang, H., Ao, P., Yan, Y., Wang, L., & Nie, Z. (2024). Noninvasive blood glucose monitoring using spatiotemporal ECG and PPG feature fusion and weight-based choquet Integral multimodel approach. IEEE Transactions on Neural Networks and Learning Systems, 35(10), 14491-14505. https://doi.org/10.1109/TNNLS.2023.3279383 DOI: https://doi.org/10.1109/TNNLS.2023.3279383
Li, J., Tobore, I., Liu, Y., Kandwal, A., Wang, L., & Nie, Z. (2021). Non-invasive monitoring of three glucose ranges based on ECG by using DBSCAN-CNN. IEEE Journal of Biomedical and Health Informatics, 25(9), 3340-3350. https://doi.org/10.1109/JBHI.2021.3072628 DOI: https://doi.org/10.1109/JBHI.2021.3072628
Mishra, B., & Nirala, N. (2023). Type2 diabetes classification from short photoplethysmogram signal using multiple domain features and Machine Learning techniques. Research on Biomedical Engineering, 39(3), 541-560. https://doi.org/10.1007/s42600-023-00287-7 DOI: https://doi.org/10.1007/s42600-023-00287-7
Mishra, B., Nirala, N., & Singh, B. K. (2024). Type-2 diabetes identification from toe-photoplethysmography using Fourier decomposition method. Neural Computing and Applications, 36(5), 2429-2443. https://doi.org/10.1007/s00521-023-09208-2 DOI: https://doi.org/10.1007/s00521-023-09208-2
Navaneethakrishna, M., & Manuskandan, S. R. (2021). Analysis of heart rate variability in normal and diabetic ECG signals using fragmentation approach. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1112-1115). IEEE. https://doi.org/10.1109/EMBC46164.2021.9631076 DOI: https://doi.org/10.1109/EMBC46164.2021.9631076
Pal, P., & Mahadevappa, M. (2023). Adaptive multidimensional dual attentive DCNN for detecting cardiac morbidities using fused ECG-PPG signals. IEEE Transactions on Artificial Intelligence, 4(5), 1225-1235. https://doi.org/10.1109/TAI.2022.3184656 DOI: https://doi.org/10.1109/TAI.2022.3184656
Prabha, A., Yadav, J., Rani, A., & Singh, V. (2021). Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier. Computers in Biology and Medicine, 136, 104664. https://doi.org/10.1016/j.compbiomed.2021.104664 DOI: https://doi.org/10.1016/j.compbiomed.2021.104664
Prabha, A., Yadav, J., Rani, A., & Singh, V. (2022). Intelligent estimation of blood glucose level using wristband PPG signal and physiological parameters. Biomedical Signal Processing and Control, 78, 103876. https://doi.org/10.1016/j.bspc.2022.103876 DOI: https://doi.org/10.1016/j.bspc.2022.103876
Sathish, D., Poojary, S. S., Shetty, S., Acharya, P. H., & Kabekody, S. (2024). Non-invasive diabetes detection system using photoplethysmogram signals. In S. Tiwari, M. C. Trivedi, M. L. Kolhe, & B. K. Singh (Eds.), Advances in Data and Information Sciences (Vol. 796, pp. 457–467). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6906-7_39 DOI: https://doi.org/10.1007/978-981-99-6906-7_39
Sen Gupta, S., Kwon, T.-H., Hossain, S., & Kim, K.-D. (2021). Towards non-invasive blood glucose measurement using machine learning: An all-purpose PPG system design. Biomedical Signal Processing and Control, 68, 102706. https://doi.org/10.1016/j.bspc.2021.102706 DOI: https://doi.org/10.1016/j.bspc.2021.102706
Shaan, B., Prabha, A., & Yadav, J. (2023). Pulse decomposition analysis based non-invasive diabetes detection system. In S. M. Thampi, J. Mukhopadhyay, M. Paprzycki, & K.-C. Li (Eds.), International Symposium on Intelligent Informatics (Vol. 333, pp. 291-302). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-8094-7_22 DOI: https://doi.org/10.1007/978-981-19-8094-7_22
Shaan, B., Yadav, J., & Prabha, A. (2022). ML based non-invasive diabetes detection system using pulse decomposition analysis of PPG signal. 2022 8th International Conference on Signal Processing and Communication (ICSC) (pp. 417-422). IEEE. https://doi.org/10.1109/ICSC56524.2022.10009195 DOI: https://doi.org/10.1109/ICSC56524.2022.10009195
Shashikant, R., Chaskar, U., Phadke, L., & Patil, C. (2021). Gaussian process-based kernel as a diagnostic model for prediction of type 2 diabetes mellitus risk using non-linear heart rate variability features. Biomedical Engineering Letters, 11(3), 273-286. https://doi.org/10.1007/s13534-021-00196-7 DOI: https://doi.org/10.1007/s13534-021-00196-7
Singha, S. K., & Ahmad, M. (2021). Noninvasive heart rate and blood glucose level estimation using photoplethysmography. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 151-155). IEEE. https://doi.org/10.1109/ICICT4SD50815.2021.9396849 DOI: https://doi.org/10.1109/ICICT4SD50815.2021.9396849
Srinivasan, V. B., & Foroozan, F. (2021). Deep Learning based non-invasive diabetes predictor using Photoplethysmography signals. 2021 29th European Signal Processing Conference (EUSIPCO) (pp. 1256-1260). IEEE. https://doi.org/10.23919/EUSIPCO54536.2021.9616351 DOI: https://doi.org/10.23919/EUSIPCO54536.2021.9616351
Susana, E., Ramli, K., Murfi, H., & Apriantoro, N. H. (2022). Non-invasive classification of blood glucose level for early detection diabetes based on photoplethysmography signal. Information, 13(2), 59. https://doi.org/10.3390/info13020059 DOI: https://doi.org/10.3390/info13020059
Susana, E., Ramli, K., Purnamasari, P. D., & Apriantoro, N. H. (2023). Non-invasive classification of blood glucose level based on photoplethysmography using time-frequency analysis. Information, 14(3), 145. https://doi.org/10.3390/info14030145 DOI: https://doi.org/10.3390/info14030145
Zanelli, S., Yacoubi, M. A. E., Hallab, M., & Ammi, M. (2023). Type 2 diabetes detection with light CNN from single raw PPG wave. IEEE Access, 11, 57652-57665. https://doi.org/10.1109/ACCESS.2023.3274484 DOI: https://doi.org/10.1109/ACCESS.2023.3274484
Article Details
Abstract views: 505
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
