APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY
Article Sidebar
Open full text
Issue Vol. 20 No. 2 (2024)
-
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE
Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI1-23
-
DIGITAL NEWS CLASSIFICATION AND PUNCTUACTION USING MACHINE LEARNING AND TEXT MINING TECHNIQUES
Fernando Andrés CEVALLOS SALAS24-42
-
MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL43-59
-
EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT
Dilek AYDOGAN-KILIC, Deniz Kenan KILIC, Izabela Ewa NIELSEN60-74
-
THE UTILIZATION OF 6G IN INDUSTRY 4.0
Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE75-89
-
APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY
Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI90-108
-
PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS
Boutkhil SIDAOUI109-125
-
IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS
Amina KINANE DAOUADJI, Fatima BENDELLA126-137
-
EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0
Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ138-156
-
AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM
Krzysztof NIEMIEC, Grzegorz BOCEWICZ157-174
-
PREDICTION OF PATIENT’S WILLINGNESS FOR TREATMENT OF MENTAL ILLNESS USING MACHINE LEARNING APPROACHES
Mohammed Chachan YOUNIS175-193
-
AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING
Roman GALAGAN, Serhiy ANDREIEV, Nataliia STELMAKH; Yaroslava RAFALSKA; Andrii MOMOT194-204
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Osteoarthritis is one of the leading causes of disability around the globe. Up to this date there is no definite cure for cartilage lesions. Only fast and accurate diagnosis enables prolonging joint survivor time. Available diagnostic methods have disadvantages such as high price, radiation, need for experienced radiologists or low availability in some regions. The present study evaluates the use of vibroarthorgraphy as a method of cartilage lesion detection. 47 patients with diagnosed cartilage lesions, and 51 healthy control group patients have been enrolled in this study. The cartilage in the study group was evaluated intraoperatively by experienced orthopaedic surgeon. Signal acquisition was performed in open and closed kinematic chain based on 10 knee joint movements from 0-90 degrees. By using EEMD-DFA algorithms, reducing classifier inputs using ANOVA and then classifying using artificial neural networks (ANN), a classification accuracy of almost 93% was achieved. A sensitivity of 0.93 and a specificity of 0.93 with an AUC of 0.942 were obtained for the multilayer perceptron network. These results allow to apply this testing protocol in a clinical setting in the future.
Keywords:
References
Aranchayanont, T., Songsiri, J., & Srungboonmee, K. (2016). Spectral analysis on vibroarthrographic signal of total knee arthroplasty. 2016 IEEE Region 10 Conference (TENCON) (pp. 1747–1751). IEEE. https://doi.org/10.1109/TENCON.2016.7848318 DOI: https://doi.org/10.1109/TENCON.2016.7848318
Bączkowicz, D., & Majorczyk, E. (2014). Joint motion quality in vibroacoustic signal analysis for patients with patellofemoral joint disorders. BMC Musculoskeletal Disorders, 15(1), 426. https://doi.org/10.1186/1471-2474-15-426 DOI: https://doi.org/10.1186/1471-2474-15-426
Balajee, A., Murugan, R., & Venkatesh, K. (2023). Security-enhanced machine learning model for diagnosis of knee joint disorders using vibroarthrographic signals. Soft Computing, 27, 7543–7553. https://doi.org/10.1007/s00500-023-07934-2 DOI: https://doi.org/10.1007/s00500-023-07934-2
Balajee, A., & Venkatesan, R. (2021). Machine learning based identification and classification of disorders in human knee joint – computational approach. Soft Computing, 25, 13001–13013. https://doi.org/10.1007/s00500-021-06134-0 DOI: https://doi.org/10.1007/s00500-021-06134-0
Cai, S., Yang, S., Zheng, F., Lu, M., Wu, Y., & Krishnan, S. (2013). Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. Computational and Mathematical Methods in Medicine, 2013(1), 04267. https://doi.org/10.1155/2013/904267 DOI: https://doi.org/10.1155/2013/904267
Chen, Z., Ivanov, P. Ch., Hu, K., & Stanley, H. E. (2002). Effect of nonstationarities on detrended fluctuation analysis. Physical Review E, 65, 041107. https://doi.org/10.1103/PhysRevE.65.041107 DOI: https://doi.org/10.1103/PhysRevE.65.041107
Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21, 6. https://doi.org/10.1186/s12864-019-6413-7 DOI: https://doi.org/10.1186/s12864-019-6413-7
Dąbrowski, Z., & Dziurdź, J. (2016). Simultaneous Analysis of noise and vibration of machines in vibroacoustic diagnostics. Archives of Acoustics, 41(4), 783–789. https://doi.org/10.1515/aoa-2016-0075 DOI: https://doi.org/10.1515/aoa-2016-0075
Delvecchio, S., Bonfiglio, P., & Pompoli, F. (2018). Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques. Mechanical Systems and Signal Processing, 99, 661–683. https://doi.org/10.1016/j.ymssp.2017.06.033 DOI: https://doi.org/10.1016/j.ymssp.2017.06.033
Falkowicz, K., & Kulisz, M. (2024). Prediction of buckling behaviour of composite plate element using Artificial Neural Networks. Advances in Science and Technology Research Journal, 18(1), 231–243. https://doi.org/10.12913/22998624/177399 DOI: https://doi.org/10.12913/22998624/177399
Glyn-Jones, S., Palmer, A. J. R., Agricola, R., Price, A. J., Vincent, T. L., Weinans, H., & Carr, A. J. (2015). Osteoarthritis. The Lancet, 386(9991), 376–387. https://doi.org/10.1016/S0140-6736(14)60802-3 DOI: https://doi.org/10.1016/S0140-6736(14)60802-3
Gong, R., Ohtsu, H., Hase, K., & Ota, S. (2021). Vibroarthrographic signals for the low-cost and computationally efficient classification of aging and healthy knees. Biomedical Signal Processing and Control, 70, 103003. https://doi.org/10.1016/j.bspc.2021.103003 DOI: https://doi.org/10.1016/j.bspc.2021.103003
Goossens, Q., Locsin, M., Gharehbaghi, S., Brito, P., Moise, E., Ponder, L. A., Inan, O. T., & Prahalad, S. (2023). Knee acoustic emissions as a noninvasive biomarker of articular health in patients with juvenile idiopathic arthritis: A clinical validation in an extended study population. Pediatric Rheumatology, 21, 59. https://doi.org/10.1186/s12969-023-00842-7 DOI: https://doi.org/10.1186/s12969-023-00842-7
Hu, K., Ivanov, P. C., Chen, Z., Carpena, P., & Stanley, H. E. (2001). Effect of trends on detrended fluctuation analysis. Physical Review E, 64, 011114. https://doi.org/10.1103/PhysRevE.64.011114 DOI: https://doi.org/10.1103/PhysRevE.64.011114
Hunter, D. J., & Bierma-Zeinstra, S. (2019). Osteoarthritis. The Lancet, 393(10182), 1745–1759. https://doi.org/10.1016/S0140-6736(19)30417-9 DOI: https://doi.org/10.1016/S0140-6736(19)30417-9
Jedliński, Ł., Caban, J., Krzywonos, L., Wierzbicki, S., & Brumerčík, F. (2015). Application of vibration signal in the diagnosis of IC engine valve clearance. Journal of Vibroengineering, 17(1), 175–187.
Jedliński, Ł., Syta, A., Gajewski, J., & Jonak, J. (2022). Nonlinear analysis of cylindrical gear dynamics under varying tooth breakage. Measurement, 190, 110721. https://doi.org/10.1016/j.measurement.2022.110721 DOI: https://doi.org/10.1016/j.measurement.2022.110721
Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14 DOI: https://doi.org/10.35784/acs-2022-14
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., & Maciejewski, M. (2023). Comparison of selected classification methods based on machine learning as a diagnostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Applied Computer Science, 19(4), 136–150. https://doi.org/10.35784/acs-2023-40 DOI: https://doi.org/10.35784/acs-2023-40
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2021a). Analysis of differences in vibroacoustic signals between healthy and osteoarthritic knees using EMD algorithm and statistical analysis. Journal of Physics: Conference Series, 2130, 012010. https://doi.org/10.1088/1742-6596/2130/1/012010 DOI: https://doi.org/10.1088/1742-6596/2130/1/012010
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2021b). Estimation of differences in selected indices of vibroacoustic signals between healthy and osteoarthritic patellofemoral joints as a potential non-invasive diagnostic tool. Journal of Physics: Conference Series, 2130, 012009. https://doi.org/10.1088/1742-6596/2130/1/012009 DOI: https://doi.org/10.1088/1742-6596/2130/1/012009
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022a). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN—Part I: Femoral-tibial joint. Sensors, 22(6), 2176. https://doi.org/10.3390/s22062176 DOI: https://doi.org/10.3390/s22062176
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022b). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN—Part II: Patellofemoral joint. Sensors, 22(10), 3765. https://doi.org/10.3390/s22103765 DOI: https://doi.org/10.3390/s22103765
Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03 DOI: https://doi.org/10.35784/acs-2019-03
Kim, K. S., Seo, J. H., Kang, J. U., & Song, C. G. (2009). An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Computer Methods and Programs in Biomedicine, 94(2), 198–206. https://doi.org/10.1016/j.cmpb.2008.12.012 DOI: https://doi.org/10.1016/j.cmpb.2008.12.012
Krakowski, P., Karpiński, R., Jojczuk, M., Nogalska, A., & Jonak, J. (2021). Knee MRI underestimates the grade of cartilage lesions. Applied Sciences, 11(4), 1552. https://doi.org/10.3390/app11041552 DOI: https://doi.org/10.3390/app11041552
Krakowski, P., Karpiński, R., Jonak, J., & Maciejewski, R. (2021a). Evaluation of diagnostic accuracy of physical examination and MRI for ligament and meniscus injuries. Journal of Physics: Conference Series, 1736, 012027. https://doi.org/10.1088/1742-6596/1736/1/012027 DOI: https://doi.org/10.1088/1742-6596/1736/1/012027
Krakowski, P., Karpiński, R., Maciejewski, R., & Jonak, J. (2021b). Evaluation of the diagnostic accuracy of MRI in detection of knee cartilage lesions using Receiver Operating Characteristic curves. Journal of Physics: Conference Series, 1736, 012028. https://doi.org/10.1088/1742-6596/1736/1/012028 DOI: https://doi.org/10.1088/1742-6596/1736/1/012028
Krakowski, P., Karpiński, R., Maciejewski, R., Jonak, J., & Jurkiewicz, A. (2020). Short-term effects of arthroscopic microfracturation of knee chondral defects in Osteoarthritis. Applied Sciences, 10(23), 8312. https://doi.org/10.3390/app10238312 DOI: https://doi.org/10.3390/app10238312
Kręcisz, K., & Bączkowicz, D. (2018). Analysis and multiclass classification of pathological knee joints using vibroarthrographic signals. Computer Methods and Programs in Biomedicine, 154, 37–44. https://doi.org/10.1016/j.cmpb.2017.10.027 DOI: https://doi.org/10.1016/j.cmpb.2017.10.027
Kręcisz, K., Bączkowicz, D., & Kawala-Sterniuk, A. (2022). Using nonlinear vibroartrographic parameters for Age-Related changes assessment in knee arthrokinematics. Sensors, 22(15), 5549. https://doi.org/10.3390/s22155549 DOI: https://doi.org/10.3390/s22155549
Krishnan, S., Rangayyan, R. M., Bell, G. D., & Frank, C. B. (2000). Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology. IEEE Transactions on Biomedical Engineering, 47(6), 773-783. https://doi.org/10.1109/10.844228 DOI: https://doi.org/10.1109/10.844228
Krishnan, S., Rangayyan, R. M., Bell, G. D., Frank, C. B., & Ladly, K. O. (1997). Adaptive filtering, modelling and classification of knee joint vibroarthrographic signals for non-invasive diagnosis of articular cartilage pathology. Medical & Biological Engineering & Computing, 35, 677–684. https://doi.org/10.1007/BF02510977 DOI: https://doi.org/10.1007/BF02510977
Lin, W.-C., Lee, T.-F., Lin, S.-Y., Wu, L.-F., Wang, H.-Y., Chang, L., Wu, J.-M., Jiang, J.-C., Tuan, C.-C., Horng, M.-F., Shieh, C.-S., & Chao, P.-J. (2014). Non-invasive knee osteoarthritis diagnosis via vibroarthrographic signal analysis. Journal of Information Hiding and Multimedia Signal Processing 5(3), 497–507.
Liu, Y., Dai, Y., Zhou, Y., Lang, X., Liu, Y., Zheng, Q., Zhang, Y., Jiang, X., Zhang, L., & Tang, J. (2019). An efficient and robust muscle artifact removal method for few-channel EEG. IEEE Access, 7, 176036–176050. https://doi.org/10.1109/ACCESS.2019.2957401 DOI: https://doi.org/10.1109/ACCESS.2019.2957401
Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: A disease of the joint as an organ. Arthritis & Rheumatology, 64(6), 1697–1707. https://doi.org/10.1002/art.34453 DOI: https://doi.org/10.1002/art.34453
Łysiak, A., Froń, A., Bączkowicz, D., & Szmajda, M. (2020). Vibroarthrographic signal spectral features in 5-class knee joint classification. Sensors, 20(17), 5015. https://doi.org/10.3390/s20175015 DOI: https://doi.org/10.3390/s20175015
Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24 DOI: https://doi.org/10.35784/acs-2020-24
Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020a). Use of deep learning networks and statistical modeling to predict changes in mechanical parameters of contaminated bone cements. Materials, 13(23), 5419. https://doi.org/10.3390/ma13235419 DOI: https://doi.org/10.3390/ma13235419
Madeleine, P., Andersen, R. E., Larsen, J. B., Arendt-Nielsen, L., & Samani, A. (2020). Wireless multichannel vibroarthrographic recordings for the assessment of knee osteoarthritis during three activities of daily living. Clinical Biomechanics, 72, 16–23. https://doi.org/10.1016/j.clinbiomech.2019.11.015 DOI: https://doi.org/10.1016/j.clinbiomech.2019.11.015
Maussavi, Z. M. K., Rangayyan, R. M., Bell, G. D., Frank, C. B., & Ladly, K. O. (1996). Screening of vibroarthrographic signals via adaptive segmentation and linear prediction modeling. IEEE Transactions on Biomedical Engineering, 43(1),. https://doi.org/10.1109/10.477697 DOI: https://doi.org/10.1109/10.477697
Mu, T., Nandi, A. K., & Rangayyan, R. M. (2008). Screening of knee-joint vibroarthrographic signals using the strict 2-surface proximal classifier and genetic algorithm. Computers in Biology and Medicine, 38(10), 1103–1111. https://doi.org/10.1016/j.compbiomed.2008.08.009 DOI: https://doi.org/10.1016/j.compbiomed.2008.08.009
Nalband, S., Prince, A., & Agrawal, A. (2018). Entropy‐based feature extraction and classification of vibroarthographic signal using complete ensemble empirical mode decomposition with adaptive noise. IET Science, Measurement & Technology, 12(3), 350–359. https://doi.org/10.1049/iet-smt.2017.0284 DOI: https://doi.org/10.1049/iet-smt.2017.0284
Nalband, S., Sreekrishna, R. R., & Prince, A. A. (2016). Analysis of knee joint vibration signals using ensemble empirical mode decomposition. Procedia Computer Science, 89, 820–827. https://doi.org/10.1016/j.procs.2016.06.067 DOI: https://doi.org/10.1016/j.procs.2016.06.067
Nalband, S., Valliappan, C. A., Prince, R. G. A. A., & Agrawal, A. (2017). Feature extraction and classification of knee joint disorders using Hilbert Huang transform. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 266–269). IEEE. https://doi.org/10.1109/ECTICon.2017.8096224 DOI: https://doi.org/10.1109/ECTICon.2017.8096224
Ota, L., Uchitomi, H., Suzuki, K., Hove, M. J., Orimo, S., & Miyake, Y. (2011). Relationship between fractal property of gait cycle and severity of Parkinson’s disease. 2011 IEEE/SICE International Symposium on System Integration (SII) (pp. 236–239). IEEE. https://doi.org/10.1109/SII.2011.6147452 DOI: https://doi.org/10.1109/SII.2011.6147452
Patankar, S., Durge, G., Joshi, A., Jaid, A., Kalambe, K., & Dhale, H. (2023). VAG signal classification using time domain statistical features and machine learning. 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC), 1–6. IEEE. https://doi.org/10.1109/ICMNWC60182.2023.10435757 DOI: https://doi.org/10.1109/ICMNWC60182.2023.10435757
Rangayyan, R. M., Oloumi, F., Wu, Y., & Cai, S. (2013). Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomedical Signal Processing and Control, 8(1), 23–29. https://doi.org/10.1016/j.bspc.2012.05.004 DOI: https://doi.org/10.1016/j.bspc.2012.05.004
Rangayyan, R. M., & Wu, Y. (2009). Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Annals of Biomedical Engineering, 37, 156–163. https://doi.org/10.1007/s10439-008-9601-1 DOI: https://doi.org/10.1007/s10439-008-9601-1
Rehman, N., & Mandic, D. P. (2010). Multivariate empirical mode decomposition. Royal Society, 466(2117), 1291–1302. https://doi.org/10.1098/rspa.2009.0502 DOI: https://doi.org/10.1098/rspa.2009.0502
Semiz, B., Hersek, S., Whittingslow, D. C., Ponder, L. A., Prahalad, S., & Inan, O. T. (2018). Using knee acoustical emissions for sensing joint health in patients with juvenile idiopathic arthritis: A pilot study. IEEE Sensors Journal, 18(22), 9128–9136. https://doi.org/10.1109/JSEN.2018.2869990 DOI: https://doi.org/10.1109/JSEN.2018.2869990
Shidore, M. M., Athreya, S. S., Deshpande, S., & Jalnekar, R. (2021). Screening of knee-joint vibroarthrographic signals using time and spectral domain features. Biomedical Signal Processing and Control, 68, 102808. https://doi.org/10.1016/j.bspc.2021.102808 DOI: https://doi.org/10.1016/j.bspc.2021.102808
Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an Artificial Neural Network in the modelling of heat curing effects on the strength of adhesive joints at elevated temperature with imprecise adhesive mix ratios. Materials, 15(3), 721. https://doi.org/10.3390/ma15030721 DOI: https://doi.org/10.3390/ma15030721
Wang, Y., Zheng, T., Song, J., & Gao, W. (2021). A novel automatic Knee Osteoarthritis detection method based on vibroarthrographic signals. Biomedical Signal Processing and Control, 68, 102796. https://doi.org/10.1016/j.bspc.2021.102796 DOI: https://doi.org/10.1016/j.bspc.2021.102796
Wu, Y. (2015). Knee Joint Vibroarthrographic Signal Processing and Analysis. Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-662-44284-5
Wu, Y., Yang, S., Zheng, F., Cai, S., Lu, M., & Wu, M. (2014). Removal of artifacts in knee joint vibroarthrographic signals using ensemble empirical mode decomposition and detrended fluctuation analysis. Physiological Measurement, 35, 429. https://doi.org/10.1088/0967-3334/35/3/429 DOI: https://doi.org/10.1088/0967-3334/35/3/429
Yang, S., Cai, S., Zheng, F., Wu, Y., Liu, K., Wu, M., Zou, Q., & Chen, J. (2014). Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method. Medical Engineering & Physics, 36(10), 1305–1311. https://doi.org/10.1016/j.medengphy.2014.07.008 DOI: https://doi.org/10.1016/j.medengphy.2014.07.008
Article Details
Abstract views: 725
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
