APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY

Anna MACHROWSKA


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics (Poland)
https://orcid.org/0000-0003-3289-2421

Robert KARPIŃSKI

r.karpinski@pollub.pl
Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, (Poland)
https://orcid.org/0000-0003-4063-8503

Marcin MACIEJEWSKI


Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology (Poland)
https://orcid.org/0000-0001-9116-5481

Józef JONAK


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics (Poland)
https://orcid.org/0000-0003-4658-4569

Przemysław KRAKOWSKI


Orthopaedic and Sports Traumatology Department, Carolina Medical Center (Poland)
https://orcid.org/0000-0001-7137-7145

Abstract

Osteoarthritis is one of the leading causes of disability around the globe. Up to this date there is no definite cure for cartilage lesions. Only fast and accurate diagnosis enables prolonging joint survivor time. Available diagnostic methods have disadvantages such as high price, radiation, need for experienced radiologists or low availability in some regions. The present study evaluates the use of vibroarthorgraphy as a method of cartilage lesion detection. 47 patients with diagnosed cartilage lesions, and 51 healthy control group patients have been enrolled in this study. The cartilage in the study group was evaluated intraoperatively by experienced orthopaedic surgeon. Signal acquisition was performed in open and closed kinematic chain based on 10 knee joint movements from 0-90 degrees. By using EEMD-DFA algorithms, reducing classifier inputs using ANOVA and then classifying using artificial neural networks (ANN), a classification accuracy of almost 93% was achieved. A sensitivity of 0.93 and a specificity of 0.93 with an AUC of 0.942 were obtained for the multilayer perceptron network. These results allow to apply this testing protocol in a clinical setting in the future.


Keywords:

Knee joint, cartilage, Artificial neural networks, EEMD, DFA, ANOVA, vibroartrography

Aranchayanont, T., Songsiri, J., & Srungboonmee, K. (2016). Spectral analysis on vibroarthrographic signal of total knee arthroplasty. 2016 IEEE Region 10 Conference (TENCON) (pp. 1747–1751). IEEE. https://doi.org/10.1109/TENCON.2016.7848318
DOI: https://doi.org/10.1109/TENCON.2016.7848318   Google Scholar

Bączkowicz, D., & Majorczyk, E. (2014). Joint motion quality in vibroacoustic signal analysis for patients with patellofemoral joint disorders. BMC Musculoskeletal Disorders, 15(1), 426. https://doi.org/10.1186/1471-2474-15-426
DOI: https://doi.org/10.1186/1471-2474-15-426   Google Scholar

Balajee, A., Murugan, R., & Venkatesh, K. (2023). Security-enhanced machine learning model for diagnosis of knee joint disorders using vibroarthrographic signals. Soft Computing, 27, 7543–7553. https://doi.org/10.1007/s00500-023-07934-2
DOI: https://doi.org/10.1007/s00500-023-07934-2   Google Scholar

Balajee, A., & Venkatesan, R. (2021). Machine learning based identification and classification of disorders in human knee joint – computational approach. Soft Computing, 25, 13001–13013. https://doi.org/10.1007/s00500-021-06134-0
DOI: https://doi.org/10.1007/s00500-021-06134-0   Google Scholar

Cai, S., Yang, S., Zheng, F., Lu, M., Wu, Y., & Krishnan, S. (2013). Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. Computational and Mathematical Methods in Medicine, 2013(1), 04267. https://doi.org/10.1155/2013/904267
DOI: https://doi.org/10.1155/2013/904267   Google Scholar

Chen, Z., Ivanov, P. Ch., Hu, K., & Stanley, H. E. (2002). Effect of nonstationarities on detrended fluctuation analysis. Physical Review E, 65, 041107. https://doi.org/10.1103/PhysRevE.65.041107
DOI: https://doi.org/10.1103/PhysRevE.65.041107   Google Scholar

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21, 6. https://doi.org/10.1186/s12864-019-6413-7
DOI: https://doi.org/10.1186/s12864-019-6413-7   Google Scholar

Dąbrowski, Z., & Dziurdź, J. (2016). Simultaneous Analysis of noise and vibration of machines in vibroacoustic diagnostics. Archives of Acoustics, 41(4), 783–789. https://doi.org/10.1515/aoa-2016-0075
DOI: https://doi.org/10.1515/aoa-2016-0075   Google Scholar

Delvecchio, S., Bonfiglio, P., & Pompoli, F. (2018). Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques. Mechanical Systems and Signal Processing, 99, 661–683. https://doi.org/10.1016/j.ymssp.2017.06.033
DOI: https://doi.org/10.1016/j.ymssp.2017.06.033   Google Scholar

Falkowicz, K., & Kulisz, M. (2024). Prediction of buckling behaviour of composite plate element using Artificial Neural Networks. Advances in Science and Technology Research Journal, 18(1), 231–243. https://doi.org/10.12913/22998624/177399
DOI: https://doi.org/10.12913/22998624/177399   Google Scholar

Glyn-Jones, S., Palmer, A. J. R., Agricola, R., Price, A. J., Vincent, T. L., Weinans, H., & Carr, A. J. (2015). Osteoarthritis. The Lancet, 386(9991), 376–387. https://doi.org/10.1016/S0140-6736(14)60802-3
DOI: https://doi.org/10.1016/S0140-6736(14)60802-3   Google Scholar

Gong, R., Ohtsu, H., Hase, K., & Ota, S. (2021). Vibroarthrographic signals for the low-cost and computationally efficient classification of aging and healthy knees. Biomedical Signal Processing and Control, 70, 103003. https://doi.org/10.1016/j.bspc.2021.103003
DOI: https://doi.org/10.1016/j.bspc.2021.103003   Google Scholar

Goossens, Q., Locsin, M., Gharehbaghi, S., Brito, P., Moise, E., Ponder, L. A., Inan, O. T., & Prahalad, S. (2023). Knee acoustic emissions as a noninvasive biomarker of articular health in patients with juvenile idiopathic arthritis: A clinical validation in an extended study population. Pediatric Rheumatology, 21, 59. https://doi.org/10.1186/s12969-023-00842-7
DOI: https://doi.org/10.1186/s12969-023-00842-7   Google Scholar

Hu, K., Ivanov, P. C., Chen, Z., Carpena, P., & Stanley, H. E. (2001). Effect of trends on detrended fluctuation analysis. Physical Review E, 64, 011114. https://doi.org/10.1103/PhysRevE.64.011114
DOI: https://doi.org/10.1103/PhysRevE.64.011114   Google Scholar

Hunter, D. J., & Bierma-Zeinstra, S. (2019). Osteoarthritis. The Lancet, 393(10182), 1745–1759. https://doi.org/10.1016/S0140-6736(19)30417-9
DOI: https://doi.org/10.1016/S0140-6736(19)30417-9   Google Scholar

Jedliński, Ł., Caban, J., Krzywonos, L., Wierzbicki, S., & Brumerčík, F. (2015). Application of vibration signal in the diagnosis of IC engine valve clearance. Journal of Vibroengineering, 17(1), 175–187.
  Google Scholar

Jedliński, Ł., Syta, A., Gajewski, J., & Jonak, J. (2022). Nonlinear analysis of cylindrical gear dynamics under varying tooth breakage. Measurement, 190, 110721. https://doi.org/10.1016/j.measurement.2022.110721
DOI: https://doi.org/10.1016/j.measurement.2022.110721   Google Scholar

Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14
DOI: https://doi.org/10.35784/acs-2022-14   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., & Maciejewski, M. (2023). Comparison of selected classification methods based on machine learning as a diagnostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Applied Computer Science, 19(4), 136–150. https://doi.org/10.35784/acs-2023-40
DOI: https://doi.org/10.35784/acs-2023-40   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2021a). Analysis of differences in vibroacoustic signals between healthy and osteoarthritic knees using EMD algorithm and statistical analysis. Journal of Physics: Conference Series, 2130, 012010. https://doi.org/10.1088/1742-6596/2130/1/012010
DOI: https://doi.org/10.1088/1742-6596/2130/1/012010   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2021b). Estimation of differences in selected indices of vibroacoustic signals between healthy and osteoarthritic patellofemoral joints as a potential non-invasive diagnostic tool. Journal of Physics: Conference Series, 2130, 012009. https://doi.org/10.1088/1742-6596/2130/1/012009
DOI: https://doi.org/10.1088/1742-6596/2130/1/012009   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022a). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN—Part I: Femoral-tibial joint. Sensors, 22(6), 2176. https://doi.org/10.3390/s22062176
DOI: https://doi.org/10.3390/s22062176   Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022b). Diagnostics of articular cartilage damage based on generated acoustic signals using ANN—Part II: Patellofemoral joint. Sensors, 22(10), 3765. https://doi.org/10.3390/s22103765
DOI: https://doi.org/10.3390/s22103765   Google Scholar

Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03
DOI: https://doi.org/10.35784/acs-2019-03   Google Scholar

Kim, K. S., Seo, J. H., Kang, J. U., & Song, C. G. (2009). An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Computer Methods and Programs in Biomedicine, 94(2), 198–206. https://doi.org/10.1016/j.cmpb.2008.12.012
DOI: https://doi.org/10.1016/j.cmpb.2008.12.012   Google Scholar

Krakowski, P., Karpiński, R., Jojczuk, M., Nogalska, A., & Jonak, J. (2021). Knee MRI underestimates the grade of cartilage lesions. Applied Sciences, 11(4), 1552. https://doi.org/10.3390/app11041552
DOI: https://doi.org/10.3390/app11041552   Google Scholar

Krakowski, P., Karpiński, R., Jonak, J., & Maciejewski, R. (2021a). Evaluation of diagnostic accuracy of physical examination and MRI for ligament and meniscus injuries. Journal of Physics: Conference Series, 1736, 012027. https://doi.org/10.1088/1742-6596/1736/1/012027
DOI: https://doi.org/10.1088/1742-6596/1736/1/012027   Google Scholar

Krakowski, P., Karpiński, R., Maciejewski, R., & Jonak, J. (2021b). Evaluation of the diagnostic accuracy of MRI in detection of knee cartilage lesions using Receiver Operating Characteristic curves. Journal of Physics: Conference Series, 1736, 012028. https://doi.org/10.1088/1742-6596/1736/1/012028
DOI: https://doi.org/10.1088/1742-6596/1736/1/012028   Google Scholar

Krakowski, P., Karpiński, R., Maciejewski, R., Jonak, J., & Jurkiewicz, A. (2020). Short-term effects of arthroscopic microfracturation of knee chondral defects in Osteoarthritis. Applied Sciences, 10(23), 8312. https://doi.org/10.3390/app10238312
DOI: https://doi.org/10.3390/app10238312   Google Scholar

Kręcisz, K., & Bączkowicz, D. (2018). Analysis and multiclass classification of pathological knee joints using vibroarthrographic signals. Computer Methods and Programs in Biomedicine, 154, 37–44. https://doi.org/10.1016/j.cmpb.2017.10.027
DOI: https://doi.org/10.1016/j.cmpb.2017.10.027   Google Scholar

Kręcisz, K., Bączkowicz, D., & Kawala-Sterniuk, A. (2022). Using nonlinear vibroartrographic parameters for Age-Related changes assessment in knee arthrokinematics. Sensors, 22(15), 5549. https://doi.org/10.3390/s22155549
DOI: https://doi.org/10.3390/s22155549   Google Scholar

Krishnan, S., Rangayyan, R. M., Bell, G. D., & Frank, C. B. (2000). Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology. IEEE Transactions on Biomedical Engineering, 47(6), 773-783. https://doi.org/10.1109/10.844228
DOI: https://doi.org/10.1109/10.844228   Google Scholar

Krishnan, S., Rangayyan, R. M., Bell, G. D., Frank, C. B., & Ladly, K. O. (1997). Adaptive filtering, modelling and classification of knee joint vibroarthrographic signals for non-invasive diagnosis of articular cartilage pathology. Medical & Biological Engineering & Computing, 35, 677–684. https://doi.org/10.1007/BF02510977
DOI: https://doi.org/10.1007/BF02510977   Google Scholar

Lin, W.-C., Lee, T.-F., Lin, S.-Y., Wu, L.-F., Wang, H.-Y., Chang, L., Wu, J.-M., Jiang, J.-C., Tuan, C.-C., Horng, M.-F., Shieh, C.-S., & Chao, P.-J. (2014). Non-invasive knee osteoarthritis diagnosis via vibroarthrographic signal analysis. Journal of Information Hiding and Multimedia Signal Processing 5(3), 497–507.
  Google Scholar

Liu, Y., Dai, Y., Zhou, Y., Lang, X., Liu, Y., Zheng, Q., Zhang, Y., Jiang, X., Zhang, L., & Tang, J. (2019). An efficient and robust muscle artifact removal method for few-channel EEG. IEEE Access, 7, 176036–176050. https://doi.org/10.1109/ACCESS.2019.2957401
DOI: https://doi.org/10.1109/ACCESS.2019.2957401   Google Scholar

Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: A disease of the joint as an organ. Arthritis & Rheumatology, 64(6), 1697–1707. https://doi.org/10.1002/art.34453
DOI: https://doi.org/10.1002/art.34453   Google Scholar

Łysiak, A., Froń, A., Bączkowicz, D., & Szmajda, M. (2020). Vibroarthrographic signal spectral features in 5-class knee joint classification. Sensors, 20(17), 5015. https://doi.org/10.3390/s20175015
DOI: https://doi.org/10.3390/s20175015   Google Scholar

Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24
DOI: https://doi.org/10.35784/acs-2020-24   Google Scholar

Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020a). Use of deep learning networks and statistical modeling to predict changes in mechanical parameters of contaminated bone cements. Materials, 13(23), 5419. https://doi.org/10.3390/ma13235419
DOI: https://doi.org/10.3390/ma13235419   Google Scholar

Madeleine, P., Andersen, R. E., Larsen, J. B., Arendt-Nielsen, L., & Samani, A. (2020). Wireless multichannel vibroarthrographic recordings for the assessment of knee osteoarthritis during three activities of daily living. Clinical Biomechanics, 72, 16–23. https://doi.org/10.1016/j.clinbiomech.2019.11.015
DOI: https://doi.org/10.1016/j.clinbiomech.2019.11.015   Google Scholar

Maussavi, Z. M. K., Rangayyan, R. M., Bell, G. D., Frank, C. B., & Ladly, K. O. (1996). Screening of vibroarthrographic signals via adaptive segmentation and linear prediction modeling. IEEE Transactions on Biomedical Engineering, 43(1),. https://doi.org/10.1109/10.477697
DOI: https://doi.org/10.1109/10.477697   Google Scholar

Mu, T., Nandi, A. K., & Rangayyan, R. M. (2008). Screening of knee-joint vibroarthrographic signals using the strict 2-surface proximal classifier and genetic algorithm. Computers in Biology and Medicine, 38(10), 1103–1111. https://doi.org/10.1016/j.compbiomed.2008.08.009
DOI: https://doi.org/10.1016/j.compbiomed.2008.08.009   Google Scholar

Nalband, S., Prince, A., & Agrawal, A. (2018). Entropy‐based feature extraction and classification of vibroarthographic signal using complete ensemble empirical mode decomposition with adaptive noise. IET Science, Measurement & Technology, 12(3), 350–359. https://doi.org/10.1049/iet-smt.2017.0284
DOI: https://doi.org/10.1049/iet-smt.2017.0284   Google Scholar

Nalband, S., Sreekrishna, R. R., & Prince, A. A. (2016). Analysis of knee joint vibration signals using ensemble empirical mode decomposition. Procedia Computer Science, 89, 820–827. https://doi.org/10.1016/j.procs.2016.06.067
DOI: https://doi.org/10.1016/j.procs.2016.06.067   Google Scholar

Nalband, S., Valliappan, C. A., Prince, R. G. A. A., & Agrawal, A. (2017). Feature extraction and classification of knee joint disorders using Hilbert Huang transform. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 266–269). IEEE. https://doi.org/10.1109/ECTICon.2017.8096224
DOI: https://doi.org/10.1109/ECTICon.2017.8096224   Google Scholar

Ota, L., Uchitomi, H., Suzuki, K., Hove, M. J., Orimo, S., & Miyake, Y. (2011). Relationship between fractal property of gait cycle and severity of Parkinson’s disease. 2011 IEEE/SICE International Symposium on System Integration (SII) (pp. 236–239). IEEE. https://doi.org/10.1109/SII.2011.6147452
DOI: https://doi.org/10.1109/SII.2011.6147452   Google Scholar

Patankar, S., Durge, G., Joshi, A., Jaid, A., Kalambe, K., & Dhale, H. (2023). VAG signal classification using time domain statistical features and machine learning. 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC), 1–6. IEEE. https://doi.org/10.1109/ICMNWC60182.2023.10435757
DOI: https://doi.org/10.1109/ICMNWC60182.2023.10435757   Google Scholar

Rangayyan, R. M., Oloumi, F., Wu, Y., & Cai, S. (2013). Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomedical Signal Processing and Control, 8(1), 23–29. https://doi.org/10.1016/j.bspc.2012.05.004
DOI: https://doi.org/10.1016/j.bspc.2012.05.004   Google Scholar

Rangayyan, R. M., & Wu, Y. (2009). Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Annals of Biomedical Engineering, 37, 156–163. https://doi.org/10.1007/s10439-008-9601-1
DOI: https://doi.org/10.1007/s10439-008-9601-1   Google Scholar

Rehman, N., & Mandic, D. P. (2010). Multivariate empirical mode decomposition. Royal Society, 466(2117), 1291–1302. https://doi.org/10.1098/rspa.2009.0502
DOI: https://doi.org/10.1098/rspa.2009.0502   Google Scholar

Semiz, B., Hersek, S., Whittingslow, D. C., Ponder, L. A., Prahalad, S., & Inan, O. T. (2018). Using knee acoustical emissions for sensing joint health in patients with juvenile idiopathic arthritis: A pilot study. IEEE Sensors Journal, 18(22), 9128–9136. https://doi.org/10.1109/JSEN.2018.2869990
DOI: https://doi.org/10.1109/JSEN.2018.2869990   Google Scholar

Shidore, M. M., Athreya, S. S., Deshpande, S., & Jalnekar, R. (2021). Screening of knee-joint vibroarthrographic signals using time and spectral domain features. Biomedical Signal Processing and Control, 68, 102808. https://doi.org/10.1016/j.bspc.2021.102808
DOI: https://doi.org/10.1016/j.bspc.2021.102808   Google Scholar

Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an Artificial Neural Network in the modelling of heat curing effects on the strength of adhesive joints at elevated temperature with imprecise adhesive mix ratios. Materials, 15(3), 721. https://doi.org/10.3390/ma15030721
DOI: https://doi.org/10.3390/ma15030721   Google Scholar

Wang, Y., Zheng, T., Song, J., & Gao, W. (2021). A novel automatic Knee Osteoarthritis detection method based on vibroarthrographic signals. Biomedical Signal Processing and Control, 68, 102796. https://doi.org/10.1016/j.bspc.2021.102796
DOI: https://doi.org/10.1016/j.bspc.2021.102796   Google Scholar

Wu, Y. (2015). Knee Joint Vibroarthrographic Signal Processing and Analysis. Springer Berlin Heidelberg.
DOI: https://doi.org/10.1007/978-3-662-44284-5   Google Scholar

Wu, Y., Yang, S., Zheng, F., Cai, S., Lu, M., & Wu, M. (2014). Removal of artifacts in knee joint vibroarthrographic signals using ensemble empirical mode decomposition and detrended fluctuation analysis. Physiological Measurement, 35, 429. https://doi.org/10.1088/0967-3334/35/3/429
DOI: https://doi.org/10.1088/0967-3334/35/3/429   Google Scholar

Yang, S., Cai, S., Zheng, F., Wu, Y., Liu, K., Wu, M., Zou, Q., & Chen, J. (2014). Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method. Medical Engineering & Physics, 36(10), 1305–1311. https://doi.org/10.1016/j.medengphy.2014.07.008
DOI: https://doi.org/10.1016/j.medengphy.2014.07.008   Google Scholar

Download


Published
2024-06-30

Cited by

MACHROWSKA, A., KARPIŃSKI, R., MACIEJEWSKI, M., JONAK, J., & KRAKOWSKI, P. (2024). APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18

Authors

Anna MACHROWSKA 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics Poland
https://orcid.org/0000-0003-3289-2421

Authors

Robert KARPIŃSKI 
r.karpinski@pollub.pl
Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
https://orcid.org/0000-0003-4063-8503

Authors

Marcin MACIEJEWSKI 

Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology Poland
https://orcid.org/0000-0001-9116-5481

Authors

Józef JONAK 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics Poland
https://orcid.org/0000-0003-4658-4569

Authors

Przemysław KRAKOWSKI 

Orthopaedic and Sports Traumatology Department, Carolina Medical Center Poland
https://orcid.org/0000-0001-7137-7145

Statistics

Abstract views: 329
PDF downloads: 144


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.