APPLICATION OF FINITE DIFFERENCE METHOD FOR MEASUREMENT SIMULATION IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Konrad KANIA
k.kania@pollub.plLublin University of Technology, Lublin (Poland)
Mariusz MAZUREK
Institute of Philosophy and Sociology of the Polish Academy of Sciences, Warsaw (Poland)
Tomasz RYMARCZYK
R&D Center Netrix S.A., Lublin, Poland; University of Economics and Innovation in Lublin, Lublin, (Poland)
Abstract
In this work, we present a computer simulation model that generates the propagation of sound waves to solve a forward problem in ultrasound transmission tomography. The simulator can be used to create data sets used in the supervised learning process. A solution to the "free-space" boundary problem was proposed, and the memory consumption was significantly optimized from O(n2) to O(n). The given method of simulating wave scattering enables the control of the noise extinction time within the tomographic probe and the permeability of the sound wave. The presented version of the script simulates the classic variant of a circular probe with evenly distributed sensors around the circumference.
Keywords:
forward problem, ultrasound transmission tomography, sensors, machine learning, finite differenceReferences
Antunes dos Santos Júnior, A. (2012). Ultrasonic Waves. BoD – Books on Demand.
DOI: https://doi.org/10.5772/1411
Google Scholar
Asadzadeh, M. (2020). An introduction to the finite element method for differential equations. John Wiley & Sons.
DOI: https://doi.org/10.1002/9781119671688
Google Scholar
Benito, J., García, A., Gavete, L., Negreanu, M., Ureña, F., & Vargas, A. (2020). Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using generalized finite difference method. Applied Numerical Mathematics, 157, 356–371. https://doi.org/10.1016/j.apnum.2020.06.011
DOI: https://doi.org/10.1016/j.apnum.2020.06.011
Google Scholar
Bilbao, S. (2013). Modeling of complex geometries and boundary conditions in finite difference/Finite volume time domain room acoustics simulation. IEEE Transactions on Audio, Speech, and Language Processing, 21(7), 1524–1533. https://doi.org/10.1109/tasl.2013.2256897
DOI: https://doi.org/10.1109/TASL.2013.2256897
Google Scholar
Botteldooren, D. (1994). Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid. Journal of the Acoustical Society of America, 95, 2313–2319.
DOI: https://doi.org/10.1121/1.409866
Google Scholar
Chiba, O., Kashiwa, T., Shimoda, H., Kagami, S., & Fukai, I. (1993). Analysis of sound fields in threedimensional space by the time-dependent finite-difference method based on the leapfrog algorithm. Journal Acoustical Society of Japan, 49, 551–562.
Google Scholar
Degroot‐Hedlin, C. D. (2008). Finite difference time domain synthesis of infrasound propagation through an absorbing atmosphere. The Journal of the Acoustical Society of America, 123(5), 3839–3839. https://doi.org/10.1121/1.2935641
DOI: https://doi.org/10.1121/1.2935641
Google Scholar
Forsythe, G. E., & Wasow, W. R. (1960). Finite-difference methods for partial differential equations. John Wiley & Sons.
Google Scholar
Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering: From fundamentals to applications. John Wiley & Sons.
DOI: https://doi.org/10.1002/9781119079699
Google Scholar
Kania, K., Maj, M., Rymarczyk, T., Adamkiewicz, P., & Gołąbek, M. (2020). Image reconstruction in ultrasound transmission tomography using the Fermat’s principle. Przegląd Elektrotechniczny, 1(1), 188–191. https://doi.org/10.15199/48.2020.01.41
DOI: https://doi.org/10.15199/48.2020.01.41
Google Scholar
Kania, K., Rymarczyk, T., Maj, M., & Gołąbek, M. (2019). 2019 applications of electromagnetics in modern engineering and medicine (PTZE). IEEE. https://doi.org/10.23919/PTZE.2019.8781687
DOI: https://doi.org/10.23919/PTZE.2019.8781687
Google Scholar
Kania, K., Rymarczyk, T., Maj, M., Gołąbek, M., Adamkiewicz, P., & Sikora, J. (2019). 2019 international interdisciplinary PhD workshop (IIPhDW). IEEE. https://doi.org/10.1109/IIPHDW.2019.8755416
DOI: https://doi.org/10.1109/IIPHDW.2019.8755416
Google Scholar
Knabner, P., & Angermann, L. (2021). Numerical methods for elliptic and parabolic partial differential equations: With contributions by Andreas Rupp. Springer Nature.
DOI: https://doi.org/10.1007/978-3-030-79385-2
Google Scholar
Kumar, A. (2004). Isotropic finite-differences. Journal of Computational Physics, 201(1), 109–118. https://doi.org/10.1016/j.jcp.2004.05.005
DOI: https://doi.org/10.1016/j.jcp.2004.05.005
Google Scholar
Li, W., Li, S., Shao, X., & Li, Z. (2019). Proceedings of the 6th conference on sound and music technology (CSMT): Revised selected papers. Springer.
DOI: https://doi.org/10.1007/978-981-13-8707-4
Google Scholar
Liu, Y., & Sen, M. K. (2009). A new time-space domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics, 228(23), 8779–8806. https://doi.org/10.1016/j.jcp.2009.08.027
DOI: https://doi.org/10.1016/j.jcp.2009.08.027
Google Scholar
Liu, Y., Ding, L., & Sen, M. K. (2011). Comparisons between the hybrid ABC and the PML method for 2D high‐order finite‐difference acoustic modeling. SEG Technical Program Expanded Abstracts 2011. https://doi.org/10.1190/1.3627807
DOI: https://doi.org/10.1190/1.3627807
Google Scholar
Mickens, R. E. (1994). Nonstandard finite difference models of differential equations. World Scientific. Polakowski, K. A., Rymarczyk, T., & Sikora, J. (2020). Obrazowanie ultradźwiękowe: Wybrane algorytmy obrazowania. Oficyna Wydawnicza Politechniki Warszawskiej.
DOI: https://doi.org/10.1142/2081
Google Scholar
Polakowski, K., & Sikora, J. (2016). Podstawy matematyczne obrazowania ultradźwiękowego. Politechnika Lubelska.
Google Scholar
Sullivan, D., & Young, J. (2001). Far-field time-domain calculation from aperture radiators using the FDTD method. IEEE Transactions on Antennas and Propagation, 49(3), 464–469. https://doi.org/10.1109/8.918622
DOI: https://doi.org/10.1109/8.918622
Google Scholar
Svensson, U. P., Fred, R. I., & Vanderkooy, J. (1999). An analytic secondary source model of edge diffraction impulse responses. The Journal of the Acoustical Society of America, 106(5), 2331–2344. https://doi.org/10.1121/1.428071
DOI: https://doi.org/10.1121/1.428071
Google Scholar
Thomas, J. (2013). Numerical partial differential equations: Finite difference methods. Springer Science & Business Media.
Google Scholar
Thomée, V. (2001). From finite differences to finite elements a short history of numerical analysis of partial differential equations. Partial Differential Equations, 2001, 1–54. https://doi.org/10.1016/b978-0-444-50616-0.50004-x
DOI: https://doi.org/10.1016/B978-0-444-50616-0.50004-X
Google Scholar
Authors
Mariusz MAZUREKInstitute of Philosophy and Sociology of the Polish Academy of Sciences, Warsaw Poland
Authors
Tomasz RYMARCZYKR&D Center Netrix S.A., Lublin, Poland; University of Economics and Innovation in Lublin, Lublin, Poland
Statistics
Abstract views: 187PDF downloads: 69
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Amina KINANE DAOUADJI, Fatima BENDELLA, IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS , Applied Computer Science: Vol. 20 No. 2 (2024)
- Mouna TARIK, Ayoub MNIAI, Khalid JEBARI, HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES , Applied Computer Science: Vol. 19 No. 2 (2023)
- Nawazish NAVEED, Hayan T. MADHLOOM, Mohd Shahid HUSAIN, BREAST CANCER DIAGNOSIS USING WRAPPER-BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORK , Applied Computer Science: Vol. 17 No. 3 (2021)
- Saheed A. ADEWUYI, Segun AINA, Adeniran I. OLUWARANTI, A DEEP LEARNING MODEL FOR ELECTRICITY DEMAND FORECASTING BASED ON A TROPICAL DATA , Applied Computer Science: Vol. 16 No. 1 (2020)
- Marcin BADUROWICZ, DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS , Applied Computer Science: Vol. 18 No. 1 (2022)
- Boutkhil SIDAOUI, PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS , Applied Computer Science: Vol. 20 No. 2 (2024)
- Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL, HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL, ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL , Applied Computer Science: Vol. 20 No. 3 (2024)
- Behnaz ESLAMI, Mehdi HABIBZADEH MOTLAGH, Zahra REZAEI, Mohammad ESLAMI, Mohammad AMIN AMINI, UNSUPERVISED DYNAMIC TOPIC MODEL FOR EXTRACTING ADVERSE DRUG REACTION FROM HEALTH FORUMS , Applied Computer Science: Vol. 16 No. 1 (2020)
- Mahmoud BAKR, Sayed ABDEL-GABER, Mona NASR, Maryam HAZMAN, TOMATO DISEASE DETECTION MODEL BASED ON DENSENET AND TRANSFER LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.