PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS
Article Sidebar
Open full text
Issue Vol. 20 No. 2 (2024)
-
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE
Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI1-23
-
DIGITAL NEWS CLASSIFICATION AND PUNCTUACTION USING MACHINE LEARNING AND TEXT MINING TECHNIQUES
Fernando Andrés CEVALLOS SALAS24-42
-
MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL43-59
-
EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT
Dilek AYDOGAN-KILIC, Deniz Kenan KILIC, Izabela Ewa NIELSEN60-74
-
THE UTILIZATION OF 6G IN INDUSTRY 4.0
Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE75-89
-
APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY
Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI90-108
-
PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS
Boutkhil SIDAOUI109-125
-
IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS
Amina KINANE DAOUADJI, Fatima BENDELLA126-137
-
EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0
Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ138-156
-
AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM
Krzysztof NIEMIEC, Grzegorz BOCEWICZ157-174
-
PREDICTION OF PATIENT’S WILLINGNESS FOR TREATMENT OF MENTAL ILLNESS USING MACHINE LEARNING APPROACHES
Mohammed Chachan YOUNIS175-193
-
AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING
Roman GALAGAN, Serhiy ANDREIEV, Nataliia STELMAKH; Yaroslava RAFALSKA; Andrii MOMOT194-204
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
In this study, the authors present and scrutinize two deep learning models designed for predicting the states of epilepsy patients by utilizing extracted data from their brain's electrical activities recorded in electroencephalography (EEG) signals. The proposed models leverage deep learning networks, with the first being a recurrent neural network known as Long Short-Term Memory (LSTM), and the second a non-recurrent network in the form of a Deep Feedforward Network (DFN) architecture. To construct and execute the DFN and LSTM architectures, the authors rely on 22 characteristics extracted from diverse EEG signals, forming a comprehensive dataset from five patients. The primary goal is to forecast impending epilepsy seizures and categorize three distinct states of brain activity in epilepsy patients. The models put forward yield promising results, particularly in terms of classification rates, across various preceding seizure timeframes ranging from 5 to 50 minutes.
Keywords:
References
Awad, M., & Khanna, R. (2015). Efficient Learning Machines: Theories, concepts, and applications for engineers and system designers. Apress Berkeley. DOI: https://doi.org/10.1007/978-1-4302-5990-9
Behbahani, S., Jafarnia Dabanloo, N., Motie Nasrabadi, A., Teixeira, C. A., & Dourado, A. (2014). A new algorithm for detection of epileptic seizures based on HRV signal. Journal of Experimental & Theoretical Artificial Intelligence, 26(2), 251-265. https://doi.org/10.1080/0952813X.2013.861874 DOI: https://doi.org/10.1080/0952813X.2013.861874
Boualoulou, N., Belhoussine Drissi, T., & Nsiri, M. (2023). CNN and LSTM for the classification of Parkinson's disease based on the GTCC and MFCC. Applied Computer Science, 19(2), 1-24. https://doi.org/10.35784/acs-2023-11 DOI: https://doi.org/10.35784/acs-2023-11
Hu, Z., Tang, S., Luo, Y., Jian, F., & Si, X. (2021). 3DACRNN model based on residual network for speech emotion classification. Engineering Letters, 29(2), 400-407.
Kim, T., Nguyen, P., Pham, N., Bui, N., Truong, H., Ha, S., & Vu, T. (2020). Epileptic seizure detection and experimental treatment: A review. Frontiers in Neurology, 11(701), 080510. https://doi.org/10.3389%2Ffneur.2020.00701 DOI: https://doi.org/10.3389/fneur.2020.00701
Klatt, J., Feldwisch-Drentrup, H., Ihle, M., Navarro, V., Neufang, M., Teixeira, C., Adam, C., Valderrama, M., Alvarado-Rojas, C., Witon, A., Le Van Quyen, M., Sales, F., Dourado, A., Timmer, J., Schulze-Bonhage, A., & Schelter, B. (2012). The EPILEPSIAE database: An extensive electroencephalography database of epilepsy patients. Epilepsia, 53(9), 1669–1676. https://doi.org/10.1111/j.1528-1167.2012.03564.x DOI: https://doi.org/10.1111/j.1528-1167.2012.03564.x
Krukow, P., Jonak, K., Karpiński, R., & Karakuła-Juchnowicz, H. (2019) Abnormalities in hubs location and nodes centrality predict cognitive slowing and increased performance variability in first-episode schizophrenia patients. scientific reports, 9, 9594. https://doi.org/10.1038/s41598-019-46111-0 DOI: https://doi.org/10.1038/s41598-019-46111-0
Kumar, V. B., Bharath, V., Kumar, K., Vijayalakshmi, M. I., & Padmavathamma (2019). A hybrid data mining approach for diabetes prediction and classification. Proceedings of The World Congress on Engineering and Computer Science (WCECS) (pp. 298-303).
Li, Y., Yu, Z., Chen, Y., Yang, C., Li, Y., Li, A. X., & Li, B. (2020). Automatic seizure detection using fully convolutional nested LSTM. International Journal of Neural Systems, 30(4), 2050019. https://doi.org/10.1142/S0129065720500197 DOI: https://doi.org/10.1142/S0129065720500197
Martinez-del-Rincon, J., Santofimia, M. J., del Toro, X., Barba, J., Romero, F., Navas, P., & Lopez, J. C. (2017). Non-linear classifiers applied to EEG analysis for epilepsy seizure detection. Expert Systems with Applications, 86, 99-112. https://doi.org/10.1016/j.eswa.2017.05.052 DOI: https://doi.org/10.1016/j.eswa.2017.05.052
Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.
Ramantani, G., Maillard, L., & Koessler, L., (2016). Correlation of invasive EEG and scalp EEG. Seizure Journal, 41, 196-200. https://doi.org/10.1016/j.seizure.2016.05.018 DOI: https://doi.org/10.1016/j.seizure.2016.05.018
Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N. E., Fernández, I. S., Klehm, J., Bosl, W., Reinsberger, C., Schachter, S., & Loddenkemper, T. (2014). Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy & Behavior, 37, 291-307. https://doi.org/10.1016/j.yebeh.2014.06.023 DOI: https://doi.org/10.1016/j.yebeh.2014.06.023
Teixeira, C. A., Direito, B., Feldwisch-Drentrup, H., Valderrama, M., Costa, R. P., Alvarado-Rojas, C., Nikolopoulos, S., Le Van Quyen, M., Timmer, J., Schelter, B., & Dourado, A. (2011). EPILAB: A software package for studies on the prediction of epileptic seizures. Journal of Neuroscience Methods, 200(2), 257-271. https://doi.org/10.1016/j.jneumeth.2011.07.002 DOI: https://doi.org/10.1016/j.jneumeth.2011.07.002
Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2007). Automatic seizure detection based on time-frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience, 2007(1), 080510. https://doi.org/10.1155/2007/80510 DOI: https://doi.org/10.1155/2007/80510
Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine, 13(5), 703-710. https://doi.org/10.1109/TITB.2009.2017939 DOI: https://doi.org/10.1109/TITB.2009.2017939
Vani, S., Suresh, G. R., Balakumaran, T., & Cross, T. A. (2019). EEG signal analysis for automated epilepsy seizure detection using wavelet transform and Artificial Neural Network. Journal of Medical Imaging and Health Informatics, 9(6), 1301-1306. https://doi.org/10.1166/jmihi.2019.2713 DOI: https://doi.org/10.1166/jmihi.2019.2713
Webb, A. R., & Copsey, K. D. (2002). Statistical Pattern Recognition. John Wiley & Sons Ltd. DOI: https://doi.org/10.1002/0470854774
Willems, L. M., Reif, P. S., Spyrantis, A., Cattani, A., Freiman, T. M., Seifert, V., Wagne, M., You, S.-J., Schubert-Bast, S., Bauer, S., Klein, K. M., Rosenow, F., & Strzelczyk, A. (2019). Invasive EEG-electrodes in presurgical evaluation of epilepsies: Systematic analysis of implantation-, video-EEG-monitoring- and explantation-related complications, and review of literature. Epilepsy & Behavior, 91, 30-37. https://doi.org/10.1016/j.yebeh.2018.05.012 DOI: https://doi.org/10.1016/j.yebeh.2018.05.012
Yindeedej, V., Uda, T., Tanoue, Y., Kojima, Y., Kawashima, T., Koh, S., Uda, H., Nishiyama, T., Takagawa, M., Shuto, F., Goto, T., (2024). A scoping review of seizure onset pattern in SEEG and a proposal for morphological classification. Journal of Clinical Neuroscience, 123, 84-90. https://doi.org/10.1016/j.jocn.2024.03.024 DOI: https://doi.org/10.1016/j.jocn.2024.03.024
Yoki Donzia, S. K., & Kon Kim, H. (2019). Recurrent Neural Network with sequence to sequence model to translate language based on TensorFlow. Proceedings of the World Congress on Engineering and Computer Science 2019 (WCECS 2019) (pp. 401-405).
Yuan, H., Li, Y., Yang, J., Li, H., Yang, Q., Guo, C., Zhu, S., & Shu, X. (2021). State of the art of non-invasive electrode materials for brain-computer interface. Micromachines, 12(12), 1521. https://doi.org/10.3390/mi12121521 DOI: https://doi.org/10.3390/mi12121521
Article Details
Abstract views: 475
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
