ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL

Toufik GHRIB

ghrib.toufik@univ-ouargla.dz
École Normale Supérieure de Ouargla, Mathemathics department (Algeria)
https://orcid.org/0000-0001-7174-8962

Yacine KHALDI


École Normale Supérieure de Ouargla, Mathemathics department (Algeria)
https://orcid.org/0000-0002-8004-7698

Purnendu Shekhar PANDEY


Bipin Tripathi Kumaon Institute of Technology (India)
https://orcid.org/0000-0003-1276-5388

Yusef Awad ABUSAL


Ufa State Petroleum Technological University (Palestine, State of)
https://orcid.org/0009-0000-3550-6384

Abstract

This article addresses the challenges of fraud in card-based financial systems and proposes effective detection and prevention strategies. By leveraging recent data analytics and real-time monitoring, the study aims to enhance transaction security and integrity. The authors review existing fraud detection methodologies, emerging trends, and the evolving tactics of fraudsters, emphasizing the importance of collaboration among financial institutions, regulatory agencies, and technology providers. Our proposed solution is an ensemble model combining Bidirectional Gated Recurrent Unit (BiGRU) and Bidirectional Long Short-Term Memory (BiLSTM) networks, designed to capture complex transactional patterns more effectively. Comparative analysis of six machine learning classifiers—AdaBoost, Naïve Bayes, Decision Tree, Logistic Regression, Random Forest, and Voting—demonstrates that our BiLSTM-BiGRU ensemble model outperforms traditional methods, achieving a fraud detection performance score of 89.22%. This highlights the advanced deep learning model's superior ability to enhance the robustness and reliability of fraud detection systems.


Keywords:

fraud detection, card-based financial systems, BiGru, BiLST, ensemble models, Machine Learning

Aghware, F. O., Ojugo, A. A., Adigwe, W., Odiakaose, C. C., Ojei, E. O., Ashioba, N. C., Okpor, M. D., & Geteloma, V. O. (2024). Enhancing the random forest model via synthetic minority oversampling technique for credit-card fraud detection. Journal of Computing Theories and Applications, 1(4), 407-420. https://doi.org/10.62411/jcta.10323
  Google Scholar

Bin Sulaiman, R., Schetinin, V., & Sant, P. (2022). Review of machine learning approach on credit card fraud detection. Human-Centric Intelligent Systems, 2, 55-68. https://doi.org/10.1007/s44230-022-00004-0
  Google Scholar

Carneiro, N., Figueira, G., & Costa, M. (2017). A data mining based system for credit-card fraud detection in e-tail. Decision Support Systems, 95, 91-101. https://doi.org/10.1016/j.dss.2017.01.002
  Google Scholar

Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks, 17(1), 113-126. https://doi.org/10.1016/S0893-6080(03)00169-2
  Google Scholar

Cui, J., Yan, C., & Wang, C. (2021). ReMEMBeR: Ranking metric embedding-based multicontextual behavior profiling for online banking fraud detection. IEEE Transactions on Computational Social Systems, 8(3), 643-654. https://doi.org/10.1109/TCSS.2021.3052950
  Google Scholar

Duarte Soares, L., de Souza Queiroz, A., López, G. P., Carreño-Franco, E. M., López-Lezama, J. M., & Muñoz-Galeano, N. (2022). BiGRU-CNN neural network applied to electric energy theft detection. Electronics, 11(5), 693. https://doi.org/10.3390/electronics11050693
  Google Scholar

Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448-455. https://doi.org/10.1016/j.ins.2017.12.030
  Google Scholar

Gorle, V. L. N., & Panigrahi, S. (2023). A semi-supervised Anti-Fraud model based on integrated XGBoost and BiGRU with self-attention network: an application to internet loan fraud detection. Multimedia Tools and Applications, 83, 56939–56964. https://doi.org/10.1007/s11042-023-17681-z
  Google Scholar

GR, J., & P, A. I. (2024). Attention layer integrated BiLSTM for financial fraud prediction. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-18764-1
  Google Scholar

Halvaiee, N. S., & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied Soft Computing, 24, 40-49. DOI:10.1016/j.asoc.2014.06.042
  Google Scholar

Klusowski, J. M., & Tian, P. M. (2024). Large scale prediction with decision trees. Journal of the American Statistical Association, 119(545), 525-537. https://doi.org/10.1080/01621459.2022.2126782
  Google Scholar

Machine Learning Group. (2024). Credit card fraud detection. Retrieved May 5, 2024 from https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
  Google Scholar

Patil, S., Somavanshi, H., Gaikwad, J. B., Deshmane, A., & Badgujar, R. (2015). Credit card fraud detection using decision tree induction algorithm. International Journal of Computer Science and Mobile Computing, 4(4), 92-95.
  Google Scholar

Poongodi, K., & Kumar, D. (2021). Support vector machine with information gain based classification for credit card fraud detection system. The International Arab Journal of Information Technology, 18(2), 199-207. https://doi.org/10.34028/iajit/18/2/8
  Google Scholar

Sahin, Y., & Duman, E. (2011). Detecting credit card fraud by decision trees and support vector machines. International MultiConference of Engineers and Computer Scientists 2011 (IMECS 2011) (pp. 1-6).
  Google Scholar

Sorournejad, S., Zojaji, Z., Atani, R. E., & Monadjemi, A. H. (2016) A survey of credit card fraud detection techniques: Data and technique oriented perspective. ArXiv, abs/1611.06439. https://doi.org/10.48550/arXiv.1611.06439
  Google Scholar

Stamate, D., Davuloori, P., Logofatu, D., Mercure, E., Addyman, C., & Tomlinson, M. (2024). Ensembles of vidirectional LSTM and GRU neural nets for predicting mother-infant synchrony in videos. In L. Iliadis, I. Maglogiannis, A. Papaleonidas, E. Pimenidis, & C. Jayne (Eds.), Engineering Applications of Neural Networks (Vol. 2141, pp. 329–342). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-62495-7_25
  Google Scholar

Sudha, C., & Akila, D. (2021). WITHDRAWN: Majority vote ensemble classifier for accurate detection of credit card frauds. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.616
  Google Scholar

Teh, B., Islam, M. B., Kumar, N., Islam, M. K., & Eaganathan, U. (2018). Statistical and spending behavior based fraud detection of card-based payment system. 2018 International Conference on Electrical Engineering and Informatics (ICELTICs) (pp. 78-83). IEEE. https://doi.org/DOI:10.1109/ICELTICS.2018.8548878
  Google Scholar

Valkenborg, D., Rousseau, A. J., Geubbelmans, M., & Burzykowski, T. (2023). Support vector machines. American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), 754-757. https://doi.org/10.1016/j.ajodo.2023.08.003
  Google Scholar

Wang, S. (2024). Intelligent BiLSTM-Attention-IBPNN method for anomaly detection in financial auditing. IEEE Access, 12, 90005-90015. https://doi.org/10.1109/ACCESS.2024.3420243
  Google Scholar

Wen, J., Tang, X., & Lu, J. (2024). An imbalanced learning method based on graph tran-smote for fraud detection. Scientific Reports, 14, 16560. https://doi.org/10.1038/s41598-024-67550-4
  Google Scholar

Xu, L., Xu, W., Cui, Q., Li, M., Luo, B., & Tang, Y. (2023). Deep heuristic evolutionary regression model based on the fusion of BiGRU and BiLSTM. Cognitive Computation, 15, 1672-1686. https://doi.org/10.1007/s12559-023-10135-6
  Google Scholar

Zhang, X., Han, Y., Xu, W., & Wang, Q. (2021). HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture. Information Sciences, 557, 302-316. https://doi.org/10.1016/j.ins.2019.05.023
  Google Scholar

Zheng, P., (2020). Dynamic Fraud Detection via Sequential Modeling. Graduate Theses and Dissertations. Retrieved from https://scholarworks.uark.edu/etd/3633
  Google Scholar

Download


Published
2024-09-30

Cited by

GHRIB, T., KHALDI, Y., PANDEY, P. S., & ABUSAL, Y. A. (2024). ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL. Applied Computer Science, 20(3), 51–66. https://doi.org/10.35784/acs-2024-28

Authors

Toufik GHRIB 
ghrib.toufik@univ-ouargla.dz
École Normale Supérieure de Ouargla, Mathemathics department Algeria
https://orcid.org/0000-0001-7174-8962

Authors

Yacine KHALDI 

École Normale Supérieure de Ouargla, Mathemathics department Algeria
https://orcid.org/0000-0002-8004-7698

Authors

Purnendu Shekhar PANDEY 

Bipin Tripathi Kumaon Institute of Technology India
https://orcid.org/0000-0003-1276-5388

Authors

Yusef Awad ABUSAL 

Ufa State Petroleum Technological University Palestine, State of
https://orcid.org/0009-0000-3550-6384

Statistics

Abstract views: 692
PDF downloads: 188


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.