ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL
Article Sidebar
Open full text
Issue Vol. 20 No. 3 (2024)
-
VIOLENCE PREDICTION IN SURVEILLANCE VIDEOS
Esraa Alaa MAHAREEK, Doaa Rizk FATHY, Eman Karm ELSAYED, Nahed ELDESOUKY, Kamal Abdelraouf ELDAHSHAN1-16
-
GAP FILLING ALGORITHM FOR MOTION CAPTURE DATA TO CREATE REALISTIC VEHICLE ANIMATION
Weronika WACH, Kinga CHWALEBA17-33
-
SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY
Venkatesh BHANDAGE, Manohara PAI M. M.34-50
-
ADVANCED FRAUD DETECTION IN CARD-BASED FINANCIAL SYSTEMS USING A BIDIRECTIONAL LSTM-GRU ENSEMBLE MODEL
Toufik GHRIB, Yacine KHALDI, Purnendu Shekhar PANDEY, Yusef Awad ABUSAL51-66
-
EXPLORING THE ACCURACY AND RELIABILITY OF MACHINE LEARNING APPROACHES FOR STUDENT PERFORMANCE
Bilal OWAIDAT67-84
-
REFRIGERANT CHARGING UNIT FOR THE RESIDENTIAL AIR CONDITIONERS: AN EXPERIMENT
Hong Son Le NGUYEN, Minh Ha NGUYEN, Luan Nguyen THANH85-95
-
CHATGPT IN COMMUNICATION: A SYSTEMATIC LITERATURE REVIEW
Muhammad Hasyimsyah BATUBARA, Awal Kurnia Putra NASUTION , NURMALINA, Fachrur RIZHA96-115
-
AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION
Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK116-131
-
DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH
Shahil SHARMA, Rajnesh LAL, Bimal KUMAR132-152
-
THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT
Loubna BOUHSAIEN, Abdellah AZMANI153-170
-
A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY
Anitha Rani PALAKAYALA, Kuppusamy P171-191
-
SIMULATION OF TORQUE VARIATIONS IN A DIESEL ENGINE FOR LIGHT HELICOPTERS USING PI CONTROL ALGORITHMS
Paweł MAGRYTA, Grzegorz BARAŃSKI192-201
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This article addresses the challenges of fraud in card-based financial systems and proposes effective detection and prevention strategies. By leveraging recent data analytics and real-time monitoring, the study aims to enhance transaction security and integrity. The authors review existing fraud detection methodologies, emerging trends, and the evolving tactics of fraudsters, emphasizing the importance of collaboration among financial institutions, regulatory agencies, and technology providers. Our proposed solution is an ensemble model combining Bidirectional Gated Recurrent Unit (BiGRU) and Bidirectional Long Short-Term Memory (BiLSTM) networks, designed to capture complex transactional patterns more effectively. Comparative analysis of six machine learning classifiers—AdaBoost, Naïve Bayes, Decision Tree, Logistic Regression, Random Forest, and Voting—demonstrates that our BiLSTM-BiGRU ensemble model outperforms traditional methods, achieving a fraud detection performance score of 89.22%. This highlights the advanced deep learning model's superior ability to enhance the robustness and reliability of fraud detection systems.
Keywords:
References
Aghware, F. O., Ojugo, A. A., Adigwe, W., Odiakaose, C. C., Ojei, E. O., Ashioba, N. C., Okpor, M. D., & Geteloma, V. O. (2024). Enhancing the random forest model via synthetic minority oversampling technique for credit-card fraud detection. Journal of Computing Theories and Applications, 1(4), 407-420. https://doi.org/10.62411/jcta.10323 DOI: https://doi.org/10.62411/jcta.10323
Bin Sulaiman, R., Schetinin, V., & Sant, P. (2022). Review of machine learning approach on credit card fraud detection. Human-Centric Intelligent Systems, 2, 55-68. https://doi.org/10.1007/s44230-022-00004-0 DOI: https://doi.org/10.1007/s44230-022-00004-0
Carneiro, N., Figueira, G., & Costa, M. (2017). A data mining based system for credit-card fraud detection in e-tail. Decision Support Systems, 95, 91-101. https://doi.org/10.1016/j.dss.2017.01.002 DOI: https://doi.org/10.1016/j.dss.2017.01.002
Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks, 17(1), 113-126. https://doi.org/10.1016/S0893-6080(03)00169-2 DOI: https://doi.org/10.1016/S0893-6080(03)00169-2
Cui, J., Yan, C., & Wang, C. (2021). ReMEMBeR: Ranking metric embedding-based multicontextual behavior profiling for online banking fraud detection. IEEE Transactions on Computational Social Systems, 8(3), 643-654. https://doi.org/10.1109/TCSS.2021.3052950 DOI: https://doi.org/10.1109/TCSS.2021.3052950
Duarte Soares, L., de Souza Queiroz, A., López, G. P., Carreño-Franco, E. M., López-Lezama, J. M., & Muñoz-Galeano, N. (2022). BiGRU-CNN neural network applied to electric energy theft detection. Electronics, 11(5), 693. https://doi.org/10.3390/electronics11050693 DOI: https://doi.org/10.3390/electronics11050693
Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448-455. https://doi.org/10.1016/j.ins.2017.12.030 DOI: https://doi.org/10.1016/j.ins.2017.12.030
Gorle, V. L. N., & Panigrahi, S. (2023). A semi-supervised Anti-Fraud model based on integrated XGBoost and BiGRU with self-attention network: an application to internet loan fraud detection. Multimedia Tools and Applications, 83, 56939–56964. https://doi.org/10.1007/s11042-023-17681-z DOI: https://doi.org/10.1007/s11042-023-17681-z
GR, J., & P, A. I. (2024). Attention layer integrated BiLSTM for financial fraud prediction. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-18764-1 DOI: https://doi.org/10.1007/s11042-024-18764-1
Halvaiee, N. S., & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied Soft Computing, 24, 40-49. DOI:10.1016/j.asoc.2014.06.042 DOI: https://doi.org/10.1016/j.asoc.2014.06.042
Klusowski, J. M., & Tian, P. M. (2024). Large scale prediction with decision trees. Journal of the American Statistical Association, 119(545), 525-537. https://doi.org/10.1080/01621459.2022.2126782 DOI: https://doi.org/10.1080/01621459.2022.2126782
Machine Learning Group. (2024). Credit card fraud detection. Retrieved May 5, 2024 from https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
Patil, S., Somavanshi, H., Gaikwad, J. B., Deshmane, A., & Badgujar, R. (2015). Credit card fraud detection using decision tree induction algorithm. International Journal of Computer Science and Mobile Computing, 4(4), 92-95.
Poongodi, K., & Kumar, D. (2021). Support vector machine with information gain based classification for credit card fraud detection system. The International Arab Journal of Information Technology, 18(2), 199-207. https://doi.org/10.34028/iajit/18/2/8 DOI: https://doi.org/10.34028/iajit/18/2/8
Sahin, Y., & Duman, E. (2011). Detecting credit card fraud by decision trees and support vector machines. International MultiConference of Engineers and Computer Scientists 2011 (IMECS 2011) (pp. 1-6). DOI: https://doi.org/10.1109/INISTA.2011.5946108
Sorournejad, S., Zojaji, Z., Atani, R. E., & Monadjemi, A. H. (2016) A survey of credit card fraud detection techniques: Data and technique oriented perspective. ArXiv, abs/1611.06439. https://doi.org/10.48550/arXiv.1611.06439
Stamate, D., Davuloori, P., Logofatu, D., Mercure, E., Addyman, C., & Tomlinson, M. (2024). Ensembles of vidirectional LSTM and GRU neural nets for predicting mother-infant synchrony in videos. In L. Iliadis, I. Maglogiannis, A. Papaleonidas, E. Pimenidis, & C. Jayne (Eds.), Engineering Applications of Neural Networks (Vol. 2141, pp. 329–342). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-62495-7_25 DOI: https://doi.org/10.1007/978-3-031-62495-7_25
Sudha, C., & Akila, D. (2021). WITHDRAWN: Majority vote ensemble classifier for accurate detection of credit card frauds. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.616 DOI: https://doi.org/10.1016/j.matpr.2021.01.616
Teh, B., Islam, M. B., Kumar, N., Islam, M. K., & Eaganathan, U. (2018). Statistical and spending behavior based fraud detection of card-based payment system. 2018 International Conference on Electrical Engineering and Informatics (ICELTICs) (pp. 78-83). IEEE. https://doi.org/DOI:10.1109/ICELTICS.2018.8548878 DOI: https://doi.org/10.1109/ICELTICS.2018.8548878
Valkenborg, D., Rousseau, A. J., Geubbelmans, M., & Burzykowski, T. (2023). Support vector machines. American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), 754-757. https://doi.org/10.1016/j.ajodo.2023.08.003 DOI: https://doi.org/10.1016/j.ajodo.2023.08.003
Wang, S. (2024). Intelligent BiLSTM-Attention-IBPNN method for anomaly detection in financial auditing. IEEE Access, 12, 90005-90015. https://doi.org/10.1109/ACCESS.2024.3420243 DOI: https://doi.org/10.1109/ACCESS.2024.3420243
Wen, J., Tang, X., & Lu, J. (2024). An imbalanced learning method based on graph tran-smote for fraud detection. Scientific Reports, 14, 16560. https://doi.org/10.1038/s41598-024-67550-4 DOI: https://doi.org/10.1038/s41598-024-67550-4
Xu, L., Xu, W., Cui, Q., Li, M., Luo, B., & Tang, Y. (2023). Deep heuristic evolutionary regression model based on the fusion of BiGRU and BiLSTM. Cognitive Computation, 15, 1672-1686. https://doi.org/10.1007/s12559-023-10135-6 DOI: https://doi.org/10.1007/s12559-023-10135-6
Zhang, X., Han, Y., Xu, W., & Wang, Q. (2021). HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture. Information Sciences, 557, 302-316. https://doi.org/10.1016/j.ins.2019.05.023 DOI: https://doi.org/10.1016/j.ins.2019.05.023
Zheng, P., (2020). Dynamic Fraud Detection via Sequential Modeling. Graduate Theses and Dissertations. Retrieved from https://scholarworks.uark.edu/etd/3633
Article Details
Abstract views: 1271
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
